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1. What Is Linear Algebra and Why Learn It?

Modern linear algebra is computational, whereas traditional linear algebra is
abstract. It is best learned through code and applications in graphics, statistics,
data science, Machine Learning, and numerical simulations.

Modern linear algebra provides the structural beams that support nearly every
algorithm implemented on computers.

Should you learn linear algebra?

If you either want to know how ML
algorithms work or want to develop or

adapt computational methods.

Yes, you should learn linear algebral
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How linear algebra is used in machine learning?

« Data in ML is represented as vectors and matrices
» Core for model design, optimization, and prediction
* Used in:

v’ Linear Regression (matrix form of solution)

v' PCA (eigenvectors, eigenvalues)

v Neural Networks (matrix of weights and activations)

o
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Example 1: Linear Regression

Suppose you have a dataset with n samples and d features.

Each sample is a row vector: () — [mj[:[ﬂ! :Egi)? - mgi)] 1 1 2
1 2 3

We can represent all the data as a matrix: 2 2 4

T (1) T 3 4 5

_ 2@ _

X = | ® =[1.2,0.8,0.4]
1 9 = 1.2 + 0.8x; + 0.4x,

L m{n:} T nxd 3D Visualization of Data Points and Regression Plane

The linear regression model predicts:
y = Xw

where: X — matrix of inputs (size n X d)

w — weight vector (size d X 1)

) — predicted outputs (size n x 1) ) \/210
Solution via least squares: w= (XTX) Xy : :

0 1 5
2 3
4 5
W 5
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Example 2: Principal Component Analysis (PCA)

PCA uses eigenvectors and eigenvalues of the Input data: 2D points (n = 3) 2 0]
. . 1 We start with a simple dataset: X = |0 2
covariance matrix: ¢ = —X'X 2 3
T - _
o The principal components are the . Center the data 1 [2 +0+3| _ [1.67]
eigenvectors of C. 3(0+2+3] |1.67
* The first eigenvector captures the direction 2-1.67 0-167] [0.33 —1.67
: : Xeentered = |0—1.67 2—-1.67| = [-1.67 0.33
Of Maximum variance 3—1.67 3—1.67) - 1.33 1.33
Projection of Data Points onto First Principal Component 2 Compute the Covariance matriX: C ~ 233 033
01 ¢ xgifiﬁiz;&pm = 033 233
PC1 direction 3. Eigenvalues and Eigenvectors
251 AL =267, Xy =2.00
1 1
201 ® — = —|—1,1
) vy ﬁ_u] U3 ﬁ[ ]
. y The first principal component (PC1) is the direction [1,1], along
o which the data has the highest variance. By projecting the
ool . <: original 2D points onto PC1, we get a 1D representation that
57 00 03 10 1320 23 30 preserves the maximum amount of information.
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Example 3: Neural Networks

In a fully connected (dense) layer:

ol = o(Willgl-1 4 pli)

LU — g0 it — [0.5 1.[]] H { [

Where: 1.5 2.0 | [2
W . weight matrix
W“-a[“] _ [05 * 1 ( 10) * 2] _ [05 20] _
a'l~1: activations from previous layer 1.5%1+2.0%2 15+4.0

bll: bias vector

1' 1.5 |' U-]. 1.4
o: activation function (e.g. ReLU, sigmoid) 2 = [ 55— 0.2 ] - [ 5.3 ]

ot = ReL () = | ) =[5

Each layer is a matrix transformation

o
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Vectors (algebraic interpretation) .

Vectors provide the foundations upon which all linear algebra is built 1~

In linear algebra, a vector is an ordered list of numbers

Vectors have several important characteristics:

 Dimensionality - the number of numbers in the vector (RN)

 Orientation - whether the vector is in column orientation or row orientation

Vectors in Python can be represented using several data types: X

asList = [1,2,3]

asArray = np.array([1,2,3]) # 1D array Many linear algebra operations won’t work on
rowWec = np.array([ [1,2,3] 1) # row Python lists. Therefore, most of the time it’s best
colVec = np.array([ [1],[2],[3] 1) # column to create vectors as NumPy arrays

o
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Geometry of Vectors

Vector is a straight line with a specific length (also called magnitude) and direction.

The two points of a vector are called the tail (A) and the head (B); the head often has an arrow tip to

disambiguate from the tail
a"
A

Conceptualizing vectors either geometrically or algebraically facilitates intuition in different applications,
but these are simply two sides of the same coin. For example, the geometric interpretation of a vector is
useful in physics and engineering (e.g., representing physical forces), and the algebraic interpretation of

a vector is useful in data science (e.g., storing sales data over time)

oy
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Operations on Vectors: Adding Two Vectors

-----'»l’
To add (subtract) two vectors, simply add (subtract) each corresponding element =

a b, a ::bz)
o

Adding vectors is straightforward in Python:
‘=| im

W

ort numpy a3 np

g

np.array([4,5,6])

W np.array([10,20,30])

- -

u np.array([0,3,6,9])
vPlusW = vtw

print (vEPlusW)

uPlusW = utw ¥ error! dimensions mismatched!
[ T W W W T W W W W N T N L NN N T

e b T g R Tt F B N S T

S+ [14 25 36]
o/

N

0]

20

..3{:].-

10

20

._304

141
25

..364

6

—15

.__ 24.

important: two vectors can be added together only if they have
the same dimensionality and the same orientation

[
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Vector-Scalar Multiplication

A scalar in linear algebra is a number on its own, not embedded in a vector or matrix.
Scalars are typically indicated using lowercase Greek letters such as a or A
Vector-scalar multiplication is indicated as, for example, fu or fu

9 36
Multiply each vector element by the scalar: Aa = (4a iay JAa) =) N=4, w=|4], Iw=]16
1 | 4
In Python vector-scalar multiplication is an example where data type matters:
©C =2 The code creates a scalar (variable s) and a vector as a list (variable a), then
2 = [3,4,3] % as list converts that into a NumPy array (variable b).
b = ﬁ'arfay{a} ¥ as np array The asterisk is overloaded in Python, meaning its behavior depends on the
rin a* s
E_ﬁirt (b*s) variable type: scalar multiplying a list repeats the list s times, which is
definitely not the linear algebra operation.
5~ [3, 4, 5, 3, 4, 5] When the vector is stored as a NumPy array, the asterisk is interpreted as
[ & 8 10] element-wise multiplication

o
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Vector Magnitude and Unit Vectors

The magnitude of a vector — also called the geometric length or the norm — is the distance from tail to
head of a vector, and is computed using the standard Euclidean distance formula:

H \% H — \/Z” 1 UZ Vector magnitude is indicated using double-vertical bars

In mathematics, the dimensionality of a vector is the

© v -=rp.array(is,2,3,7,8,91) ) , ,
number of elements in that vector, while the length is a

v dim = len(v) # math dimensionality

print (v_dim) geometric distance.
v_mag = np.linalg.norm(v) # math magnitude, length, or norm In Python, the function len() (where len is short for
SESSLEINT EET length) returns the dimensionality of an array, while
e the function np.norm() returns the geometric length
T 14.422205101855856 (magnitude)
A unit vector (V) is definedas || v | =1 © v - op.array(i1,2,2])
v _mag = np.linalg.norm(v)
N 1 v un = v/v_mag
V = V print (v_un)
| v

—E'r [0.33333333 0.6o6obbee] O.ob6obbobT]

o
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The Vector Dot Product

The dot product is a single number that provides information about the relationship between two vectors
Il
Dot product formula: O = Z ab, or ab = |Z1||7)| COSQ
1 =1

In machine learning, the dot product plays a key role as a way to quantify the

© :a = rnp.array(i, 2,3, 1) similarity or alignment between two feature vectors.
b = fp SRR e For example, suppose you’re analyzing a dataset that includes height and weight
20 = [“F’lf‘:’t (v, w) measurements for 20 individuals. These two variables are typically correlated—taller
print (a

— individuals often weigh more—so the dot product of the height and weight vectors
would likely be relatively large.

However, it's important to note that the magnitude of the dot product is scale-
dependent. If the measurements are in grams and centimeters, the resulting dot
product will be much larger than if the same values are expressed in pounds and feet.
To make meaningful comparisons across variables or datasets, we often normalize
the vectors before computing the dot product.

This normalized version of the dot product is better known as the Pearson
correlation coefficient, a widely used statistic in data science and machine learning
to assess the linear relationship between two variables—regardless of their original

le.
ﬁﬂ sca
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Vector Sets

A collection of vectors is called a set

Vector sets are indicated using capital italics letters, like S or V.
Mathematically, we can describe sets as the following:

Vi={vy, ..., vy}

Vector sets can contain a finite or an infinite number of vectors.
Vector sets can also be empty, and are indicated as V = { }.

Linear Independence

A set of vectors is linearly dependent if at least one vector in
the set can be expressed as a linear weighted combination of
other vectors in that set

W=AVi+ v+ ... +AV,

A set of vectors is linearly independent if no vector can be
expressed as a linear weighted combination of other vectors in

Ghe set

o

J

Example

Try to determine whether each set is dependent or

independent: i” .s'—l ;HEH

|

Vector set V is linearly independent: it is impossible to
express one vector in the set as a linear multiple of the
other vector in the set, then there is no possible scalar A
for which v, = Av,.

Vector set S is dependent, because we can use linear
weighted combinations of some vectors in the set to
obtain other vectors in the set. There is an infinite
number of such combinations, one of which is s, = 0.5s,

b

[ 8] [4] [14]1 [13]) The way to determine
linear independence is to create a
T = —4| |6 2 |- matrix from the vector set,
141" lol’ : compute the rank of
the matrix, and compare the rank
| 6] 3] [7][8]) ‘ to the smaller of the number of

rows or columns
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Subspace (nignpoctip) and Span (niHiMHa 060/10HKa)

A subspace is the infinite set of all possible linear weighted combinations of a set of vectors.
The dimensionality of the subspace spanned by a set of vectors is the smallest number of vectors that

forms a linearly independent set.
If a vector set is linearly independent, then the dimensionality of the subspace spanned by the vectors

in that set equals the number of vectors in that set.

The formal definition of a vector subspace is a subset that is closed under addition and scalar
multiplication and includes the origin of the space.

A

' Span is the mechanism of creating a subspace. (On the other hand, when you use
e SPanasanoun, then span and subspace refer to the same infinite vector set)

Two vectors (black) and the subspace they span (gray)

o
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Basis

The most common basis set is the Cartesian axis: the familiar XY plane that you’ve used since elementary

school. We can write out the basis sets for the 2D and 3D Cartesian graphs as follows:
(1] [o] [0] ]
2= {bE bl o
D) = 0 s | D3 = 9 R R -
o] [o] [1] ]

31 |-3
But those are not the only basis sets. The following set is a different basis set for R2 == T = { l } I } }

_et us describe data points p and q. | o s
n basis S, those two coordinates are p = (3, 1) and q = (-6, 2). _:
n this case, that combination is 3s, + 1s, for point p, and -6s, + 2s, for point q 1 q

n basis T, we have p = (1, 0) and q = (0, 2). 1™ o

And in terms of basis vectors, we have 1t; + Ot, for point p and 0Ot + 2t, for 0- ~~Le-

point g.

Again, the data points p and q are the same regardless of the basis set,
but T provided a compact and orthogonal description

o
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Basis

Definition of Basis. Basis is the combination of span and independence: a set of vectors can be a basis for
some subspace if it (1) spans that subspace and (2) is an independent set of vectors.

* The basis needs to span a subspace for it to be used as a basis for that subspace, because you cannot describe something
that you cannot measure.

* Why does a basis set require linear independence? The reason is that any given vector in the subspace must have a unique
coordinate using that basis.

Bases are extremely important in data science and machine learning. In fact, many problems in applied
linear algebra can be conceptualized as finding the best set of basis vectors to describe some subspace:
« dimension reduction,

« feature extraction,

« principal components analysis,

* independent components analysis,

« factor analysis,

 singular value decomposition,

 linear discriminant analysis,

* image approximation,

« data compression
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Vectors. Summary

« A vector set is a collection of vectors. There can be a finite or an infinite number of vectors
in a set.

* Linear weighted combination means to scalar multiply and add vectors in a set. Linear
weighted combination is one of the single most important concepts in linear algebra.

* Aset of vectors is linearly dependent if a vector in the set can be expressed as a linear
weighted combination of other vectors in the set. And the set is linearly independent if
there is no such linear weighted combination.

« Asubspace is the infinite set of all possible linear weighted combinations of a set of vectors.

« A basis is a ruler for measuring a space. A vector set can be a basis for a subspace if it (1)
spans that subspace and (2) is linearly independent. A major goal in data science is to
discover the best basis set to describe datasets or to solve problems.

ol
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Code Exercise 1

1. Define a vector set containing one vector [1, 2]. Then create 100 numbers drawn randomly from a
uniform distribution between -3 and +3. Those are your random scalars. Multiply the random scalars by
the basis vector to create 100 random points in the subspace. Plot those points.

2. Repeat the procedure but using two vectors in R3: [2, 6, 4] and [-1, 1, 2] and 500 numbers. Note that
you need 500 x 2 random scalars for 500 points and two vectors. The resulting random dots will be on a
plane.

3. Finally, repeat the R3 case but setting the second vector to be 1/2 times the first.

Random Points in 1D Subspace of R? (Line)

Points on a line
— vl =[2, 6, 4]
61 @ Points in subspace e Points on the plane —_— v2=0.5%vl
/ —_— vl =(2,5,1]

Random Points in 1D Subspace Spanned by [1, 2] Random Points in 2D Subspace of R?

— v2=][0,1, 2]

0 , -5
. /

4
. /

o
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Matrices

A matrix is a vector taken to the next level. Matrices are highly versatile mathematical objects. They can store sets of
equations, geometric transformations, the positions of particles over time, financial records, and myriad other things.

In data science, matrices are sometimes called data tables, in which rows correspond to observations and columns correspond
to features.

Matrices are indicated using bold-faced capital letters, like matrix A or M. The size of a matrix is indicated using (row, column)
convention.

You can refer to specific elements of a matrix by indexing the row and column position: 13579
the element in the 3rd row and 4th column of matrix A is indicated as a, ,.

024638
SpeC]al Matr]ces Upper-triangular Lower-triangular 1 4 '7 a 9

Q
Q
O
-
Q

0

5]
0
0
0
0
0
0

“R-N-K-E-1-k-K-] O
cooccolNooo
E-N-E-E-E-E-K=
coffloocooo
coocoocoo0o0o
HOOOCOOOO

p
0
0
0
0
0
0
0

o
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Matrix Math: Addition and Subtraction

You add two matrices by adding their corresponding elements

234 [ 0 3 1] '(2 + 0) (3 + 3) (4 + 1)" 2 65
+ — — ' matrix addition (subtraction)
o

1 24] [-1 -4 2] _(1 - 1) (2 - 4) (4 t 2)J 0 -2 6 is defined only between two

matrices of the same size
s-a=(g -G -G 5

“Shifting” a Matrix

As with vectors, it is not formally possible to add a scalar to a matrix, as in A + A. Python allows such an operation, which
involves broadcast adding the scalar to each element of the matrix. That is a convenient computation, but it is not formally a
linear algebra operation. There is a linear-algebra way to add a scalar to a square matrix, and that is called shifting a matrix.

o A = np.array([ [4,5,1],[0,1,11],([4,59.,7] 1)
45 1] 100 [105 1] e e
s ¥ NOI shirting.:
A+ N == [0111] +6[010[ =0 711 A + s*np.eye(len(a)) # shifting
49 7 0 0 1} 4 9 13 el

[ 0., 7., 11.1],

array([[10., S., 1.1,
[ 4., 5., 132.11)

mj Only the diagonal elements change; the rest of the matrix is unadulterated by shifting
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Scalar and Hadamard Multiplications

Scalar-matrix multiplication means to multiply each element in the matrix by the same scalar.

[13] &2 = np.array([ [4,5,1],[0,1,11],([4,5.,7] 1)

a = k&

a b ~va vb)] sa=s %2
hil - print (si)

¢ d] ye yd

F—

=¥+ [[24 30 &]
[ 0 & 66]
[24 54 42]]

Hadamard multiplication involves multiplying two matrices element-wise (hence the alternative terminology element-
wise multiplication)
° A = np.array([ [4,5,1],[0,1,11]),([4,5,7] 1)
B = np.array([ [0,2,11,[3,1,11,[2,-1,5] 1)
C = A*B # Hadamard multiplication

print (C)

2 3 -{f; h 2(1 3.&" np.multiply(&,B) # alsc Hadamard
@ ) = : :> D = ARB # NOT Hadamard!
print (D)
45 |cd 4c 5d -

EE} [[ 0 10 1]
[ 0 1 11]
[ 8 -% 357]
[[ 17 12 14]
[ 25 -10 58]

ﬁ [ 41 10 48]]
LD

e
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Standard Matrix Multiplication

Matrix multiplication is valid only when the “inner”
defined by the “outer” dimensions

A=(a u w A-B
" B B B ZX3é3X4
B={m m ®m = /
HE B B B The>f the resultlng
SR N HHHH I &

The reason why matrix multiplication is valid only if
the number of columns in the left matrix matches the
number of rows in the right matrix is that the (i,j)t
element in the product matrix is the dot product
between the it" row of the left matrix and the jt
column in the right matrix

o
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dimensions match, and the size of the product matrix is

Example of matrix multiplication

3121
2 3 1\| _
A= -1 2/} B= g 1 _21
_ ([€11| [€12 |C13\ _ /8 8 1
= qcm C22 C23) (4 1 5)

c;=2-3+3-0+1-2 =8 =03+ (-1)-04+2-2 =4

C12:2'2+3'1+1'1:8 C22:O.2+(_1).1+2.1 =1

C3=2-143-(-D+1:2 =1 ¢cp3=0-1+(-1)-(-1)+2-2 =5

t’ import numpy as np

A = np.arravy([ [2,3,1]1,[0,-1,2] 1)
B = np.array([ [3,2,1],[0,1,-1],[2,1,2] 1]}
C = ARB # Matrix Multiplication
praint (C)
3+ [[8 8 1]
[4 1 5]]

From Mathematical Foundations to Implementation in PYTHON"



Geometric transforms

When we think of a vector as a geometric line, then matrix-vector multiplication becomes a way of rotating
and scaling that vector.

Matrix-vector multiplication is a Standard Matrix Multiplication where one “matrix” is a vector.

2D case for easy visualization:

o M = np.array( [
x = np.array([ [1,1.3] ])
Mx = MEx
print (Mx)

S [6.3]

T [3.5]]

[Z2,3]1,[2,1]1 1)
. T

Y-axis

8

?'_

6_

Vector x and its image Mx

Graph visualizes these two vectors. You can see that the matrix M both rotated and

stretched the original vector x

o
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Vector x and its image My

[_I M = r-p'ar:a?{: [LFE]I 2.r— :' 8 -y
v = np.array([ [1.5,1] ]).T - . My
My = MEy
print (My) ©7
5_
S 6

Y-axis
1N

The matrix-vector product is no longer rotated into a different direction.
That is not a random event: in fact, vector y is an eigenvector of matrix M, and the amount by
which M stretched y is its eigenvalue.

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"



Code Exercises 2

1. This exercise will help you gain familiarity with indexing matrix elements. Create a 4 x 5 matrix using
np.arange (20) .reshape (4, 5) . Then write Python code to extract the element in the third row, fourth column. Print
out a message like the following: The matrix element at index (3,4) is 13.

—E—- The matrix & is:
[[ O 1 2 3 4]
[ 5 & T 8 9]
[10 11 12 13 14]
[15 16 17 18 19]]

The matrix element at index (3,4) 1= 13.

2. Code matrix multiplication using for loops. Confirm your results against using the numpy @ operator. This exercise will
help you solidify your understanding of matrix multiplication.

r— - " y
=¥ Result using for loops:

[ 28. ed.
135, 154.] . .
Note: When comparing the manually computed result with the
Fesult using NumPy B cperator: NumPy d Operator, use np.allclose () instead of ==.
1[“15:41 This accounts for small numerical differences due to floating-

point precision, ensuring a reliable comparison.

b4 The results match!

o
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Matrix Norms

There is no “the matrix norm”; there are multiple distinct norms that can be computed from a matrix.
Matrix norms can be divided into two families:

* Element-wise (computed based on the individual elements of the matrix, and thus these norms can be interpreted to
reflect the magnitudes of the elements in the matrix);

Induced (one of the functions of a matrix is to encode a transformation of a vector; the induced norm of a matrix is a
measure of how much that transformation scales (stretches or shrinks) that vector)

We will consider Element-wise Euclidean norm (extension of

Matrix norms have several applications in ML.
the vector norm to matrices). It is is called Frobenius norm

One of the important applications is in regularization,
N ,;, which aims to improve model fitting and increase
H A H E Z; =1 Z_;‘ =1 (Iﬂ' generalization of models to unseen data.

The basic idea of regularization is to add a matrix norm as
a cost function to a minimization algorithm. That norm will

" import numpy &s np

A = np.array([[2, 3]. help prevent model parameters from becoming too large
(2, 111) (€2 regularization) or encouraging sparse solutions (£1
regularization).
frobenius norm = np.linalg.norm(a, 'fro')

In fact, modern deep learning architectures rely on matrix
norms to achieve such impressive performance at solving
computer vision problems.

print ("Frobenius norm of A:", frobenius norm)

Frobenius norm of A: 4.2426406871159285

4]
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Rank

Rank is a number associated with a matrix. It is related to the dimensionalities of matrix subspaces, and has
important implications for matrix operations, including inverting matrices and determining the number of

solutions to a system of equations.

Rank is the largest number of columns (or rows) that form a linearly independent set

13 1 3.1 132 111 000
A=[2, B=|2 6|, C=[2 6|, D=|661|, E=[1 11|, F=[000
412 4 12 420 111 000
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Determinant

The determinant is a number associated with a square matrix

The determinant of a square matrix is the sum of the products of the

elements of any row (or column) and their corresponding cofactors: Computing the determinant of a 2 x 2 matrix

m
. ding by the it 101 |@ b a b b
- xpandin e 1" row (el = = (d — OC
A =detA = g Clij'Cij P g by ¢ d ¢ d

j=1

or Computing the determinant of a 3 x 3 matrix

a b c

n
_ _ c. : - th
A= detd _z i) CU Expanding by the J% column d e f| = aei+bfg+ cdh—ceqg—bdi—afh
=1

g hi
The cofactor of element a;; in a matrix is: C;; = (—1)""7 - det(M;;)

where: M;; is the minor of a;: the determinant of the submatrix obtained by removing row i and column j from the
original matrix. The sign factor (-1)*/ ensures the correct sign pattern

o
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The Characteristic Polynomial

Combining matrix shifting with the determinant is called the characteristic polynomial of the matrix

det(A —NXI) = A - The characteristic polynomial of the matrix

The matrix below is full rank (A = -8), but I’m going to assume that it has a determinant of 0 after being shifted by some scalar
A; the question is, what values of A will make this matrix reduced-rank? 33

A=-2 = [ ]
1-\ 3 59

1 3 N
ff[’f( — )\I) — () |:> =0 = (1 —;\)é—g =0 |:>
31 3 1-A

-3 3
AN=4 = I ‘
3 -3

The solutions to the characteristic polynomial set to A = 0 are the eigenvalues of the matrix

o
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Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors are important concepts in linear algebra, with applications in various machine
learning algorithms. Given a square matrix A, an eigenvector v and its corresponding eigenvalue A satisfy the
equation:

Av = Av

Eigenvectors represent the direction of linear transformations, while eigenvalues represent the scalar factor
by which the eigenvector is scaled.

o 1mport numpy as np J— . i
A = np.array([[1, 2], [3, 4]1]) _.l,' Eigenvalues:
eligenvalues, eligenvectors = np.linalg.eig(a) [—0.37228132 2.3T122813532]
print ("Eigenvalues:") EigEH?ECtE}I‘S .
print (eigenvalues) - _ A n - -
print ("Eigenvectors: ™) [ T 524-0484 —U. 4159?35{3'
srint (eigenvectors) [ O.5657e74e —-0.90937671]]

o
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Matrix Inverse

The inverse of matrix A is another matrix A~! (pronounced “A inverse”) that multiplies A to produce the
identity matrix. In other words, A~'A = 1.

Cll C21 nen Cnl
A-1 L [ Ciz Cpp o Cp Cij = (—1)i+le-j - is a for element a;; of the

' matrix A.
Cln CZn mnn Cnn

Computing the inverse in Python is easy: The matrix Its inverse Their product

0 import numpy as np

0.0

L = np.array([ [1,4],[2,7]

Rinv = np.linalg.inv (&)

mj [0. 1.1 You can confirm that AGAinv gives the identity matrix

e
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Code Exercises

1. The inverse of the inverse is the original matrix; in other words, (A7) -1 = A. Illustrate this using Python.

2. The norm of a matrix is related to the scale of the numerical values in the matrix. In this exercise, you
will create an experiment to demonstrate this. In each of 10 experiment iterations, create a 10 x 10
random numbers matrix and compute its Frobenius norm. Then repeat this experiment 40 times, each
time scalar multiplying the matrix by a different scalar that ranges between 0 and 50. The result of the
experiment will be a 40 x 10 matrix of norms. Figure 6-7 shows the resulting norms, averaged over the
10 experiment iterations. This experiment also illustrates two additional properties of matrix norms:
they are strictly nonnegative and can equal 0 only for the zeros matrix.

3. Check for Linear Independence of Vectors. Write a function that takes a 2D NumPy array where each
row is a vector and determines whether the set of vectors is linearly independent.

4. Matrix Multiplication and Associativity. Demonstrate the associativity of matrix
multiplication:(A4-B)-C=A-(B-C). Use randomly generated 3x3 matrices.

5. Apply Linear Transformation to 2D Vectors. Apply a 2D transformation matrix (e.g., rotation) to a set of
vectors and visualize both the original and transformed vectors.

ol
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Let’s proceed to the practical exercises

link:

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"



https://colab.research.google.com/drive/1MsiEeZ2IHUmxUcJW81t_PUsLSHKnC1T5?usp=sharing
https://colab.research.google.com/drive/1MsiEeZ2IHUmxUcJW81t_PUsLSHKnC1T5?usp=sharing
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