
CLUSTERING: 
K-means, Hierarchical Clustering 

Lecture by prof. Dmytro Babets

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"



vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

1. Clustering

Clustering is one of the most widely used techniques for exploratory data analysis. Across all disciplines, 

from social sciences to biology to computer science, people try to get a first intuition about their data by 

identifying meaningful groups among the data points.

Definition of Clustering

Clustering is a fundamental task in unsupervised machine learning. It involves grouping a collection of 

objects (data points) into subsets or “clusters,” such that data points in the same cluster are more similar 

(according to some distance or similarity metric) to each other than to those in other clusters. 

Unlike supervised learning, where models are trained using labeled data, clustering operates without 

predefined labels. The goal is to uncover the underlying structure or distribution in the dataset.



vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Why Do We Cluster?

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Clustering is used to:

• Discover natural groupings or patterns in data. 

• Reduce the complexity of data.

• Preprocess data for other machine learning tasks such as classification.

• Provide insight or structure in exploratory data analysis.

Feature Clustering (Unsupervised) Classification (Supervised)

Input Data Unlabeled Labeled (input features + class labels)

Goal Find structure/groups Assign data to predefined classes

Output Cluster assignments (no meaning a priori) Class labels (with known meanings)

Example Grouping news articles by topic Classifying emails as spam or not spam



vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

A Clustering Model

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Clustering tasks can vary in terms of both the type of input they have and the type of outcome they are 

expected to compute. For concreteness, we shall focus on the following common setup:

A set of elements X and a distance function over it. 

That is, a function d : X ×X →R+ that is symmetric, 

satisfies d(x, x) = 0 for all x ∈ X. 

Additionally, some clustering algorithms also require 

an input parameter k (determining the number of 

required clusters).

A partition of the domain set X into subsets. 

• That is, C = (C1,. . .Ck ) where ڂi=1
k Ci = X and 

for all i ≠ j , Ci ∩ Cj = ∅. 

• The partition of X into the different clusters is

probabilistic where the output is a function 

assigning to each domain point, x ∈ X, a vector 

(p1(x),. . . , pk(x)), where pi(x) = P[x ∈ Ci ] is the 

probability that x belongs to cluster Ci . 

• The clustering dendrogram which is a hierarchical 

tree of domain subsets, having the singleton sets 

in its leaves, and the full domain as its root. 

Input Output



vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Main types of clustering algorithms

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Type of Algorithm Examples Main Idea

Centroid-based K-means, K-median
Objects belong to the cluster with the nearest center 

(centroid).

Linkage-based (Hierarchical)
Single linkage, Complete linkage, 

Average linkage, Ward’s method

A hierarchy of clusters is constructed by merging groups 

based on a proximity (similarity) measure.

Density-based DBSCAN, OPTICS
Clusters are formed as regions of high point density 

separated by areas of low density (“gaps”).

Distribution-based Gaussian Mixture Models (GMM)
It is assumed that the data are generated from a mixture 

of several probabilistic distributions.

Graph-based (sometimes 

considered separately)
Spectral clustering

Clusters are identified based on graph properties 

(eigenvalues of the adjacency or Laplacian matrix).



vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

K-Means Clustering

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

A common approach to clustering defines a cost (or objective) function over a set of possible partitioning. 

The goal of the algorithm is to find the partitioning with the lowest cost. 

In this way, clustering becomes an optimization problem, where the objective function maps the input data (X, d) and a 

proposed clustering solution C=(C1,…,Ck) to a positive real value.

K-means Objective Function

• The data is divided into k disjoint clusters C1,…,Ck, each represented by a centroid 𝜇𝑖.

• The objective: minimize the sum of squared distances between each point and the centroid of its cluster.

• Intuition: find centroids 𝜇1,…,𝜇𝑘 that minimize this distortion.

• Application example: in digital communication, signals can be approximated by their nearest centroid, reducing 

transmission cost while introducing minimal distortion.



vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

The k-Means Algorithm (Lloyd’s algorithm)

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

• Finding the true optimal solution is computationally challenging — the problem is NP-hard (and even NP-hard to 

approximate within a constant factor).

• Instead, a simple iterative algorithm is typically applied. 

• In fact, in many contexts, the term k-means clustering refers to the result of this iterative process, rather than the exact 

global minimum of the k-means cost.

• We will present the algorithm assuming the Euclidean distance function:                             or 

Input: dataset X⊂Rn, number of clusters k

1.Initialize: randomly select k centroids μ1,…,μk.

2.Repeat until convergence:

1.Assignment step: for each point x∈X, assign it to the cluster with 

the nearest centroid.

2.Update step: recalculate each centroid μi as the mean of all points 

in its cluster Ci.

Lemma. Each iteration of the k-means algorithm does not increase the k-means objective function



vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Example of K-means Clustering (manual calculation)

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Initial data:

Set of points: 𝑋={1,2,7,8} 

Number of clusters: 𝑘=2

Step 1. Initialization

Choose two initial centroids (for example, the first and last points):

Step 2. First iteration

Assignment:

•Distance from 1: to C1 = 0, to C2 = 7 → assigned to C1

•Distance from 2: to C1 = 1, to C2 = 6 → assigned to C1

•Distance from 7: to C1 = 6, to C2 = 1 → assigned to C2

•Distance from 8: to C1 = 7, to C2 = 0 → assigned to C2

Clusters after assignment:

C1:{1,2},C2:{7,8} 

Update centroids:

Step 3. Second iteration

Assignment with new centroids:

•Distance from 1: to C1 = 0.5, to C2 = 6.5 → C1

•Distance from 2: to C1 = 0.5, to C2 = 5.5 → C1

•Distance from 7: to C1 = 5.5, to C2 = 0.5 → C2

•Distance from 8: to C1 = 6.5, to C2 = 0.5 → C2

Clusters remain the same:

C1:{1,2},C2:{7,8} 

Centroids do not change:

Step 4. Convergence

Since the centroids did not change after the second iteration, the algorithm converges.

Final clusters:



vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Example of K-means Clustering (Python)

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"



vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

sklearn.cluster.KMeans

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Category Name Type / Default Value Description (Academic Style)

Parameters n_clusters int, default=8
Defines the number of clusters to form and the number of centroids to 

generate.

init
{'k-means++', 'random'} or 

ndarray, default='k-means++'

Specifies the method for initializing the centroids. The 'k-means++' method 

accelerates convergence.

n_init int or 'auto', default=10

Determines the number of times the k-means algorithm will be run with 

different centroid seeds; the best result is selected based on the inertia 

criterion.

max_iter int, default=300 Maximum number of iterations of the algorithm for a single run.

tol float, default=1e-4 Relative tolerance with respect to inertia to declare convergence.

random_state
int, RandomState instance or 

None, default=None
Ensures reproducibility of results when the initialization is random.

algorithm {'lloyd', 'elkan'}, default='lloyd'
Specifies the algorithm to use: Lloyd (standard) or Elkan (more efficient for 

dense datasets).

copy_x bool, default=True
Determines whether the input data is copied or modified in place during the 

computation.

n_jobs
None or int, default=None 

(deprecated)
Specifies the number of parallel jobs to run for computation.

init_size int or None, optional
Determines the number of samples to randomly select for centroid 

initialization when using mini-batch variants.



vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

sklearn.cluster.KMeans

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Category Name Type / Default Value Description (Academic Style)

Attributes cluster_centers_
ndarray of shape 

(n_clusters, n_features)
Coordinates of the cluster centers after training.

labels_
ndarray of shape 

(n_samples,)
Labels of each point, indicating the assigned cluster.

inertia_ float
Sum of squared distances of samples to their closest cluster center — 

used as a measure of internal cluster compactness.

n_iter_ int Number of iterations performed during the final run.

n_features_in_ int Number of features seen during fitting.

feature_names_in_
ndarray of shape 

(n_features_in_,)
Names of features seen during fitting (if input is a DataFrame).



vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Choosing the Number of Clusters

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Determining the optimal number of clusters, K, is an important task in K-means clustering. 

Silhouette analysis
Idea: Measure how well objects are clustered 

compared to neighboring clusters.

Elbow method
Idea: Analyze the reduction in the sum of squared 

errors (SSE) with increasing number of clusters.

where 𝐶𝑖 is the 𝑖-th cluster and 𝜇𝑖 its centroid

Algorithm:

• For 𝑘=1,2,…,𝐾𝑚𝑎𝑥: run clustering and compute 𝑆𝑆𝐸(𝑘).

• Plot 𝑆𝑆𝐸(𝑘) vs 𝑘.

• Choose 𝑘 at the “elbow” point — where the decrease in 

𝑆𝑆𝐸 slows down.

For object 𝑖:

where

𝑎(𝑖) = average distance from 𝑖 to all other points in the same 

cluster,

𝑏(𝑖) = minimum average distance from 𝑖 to points in other clusters.

The overall silhouette score (Mean Silhouette Score):

Algorithm:

• For 𝑘=2,3,…,𝐾𝑚𝑎𝑥: run clustering.

• Compute silhouette score 𝑆(𝑘).

• Choose 𝑘 that maximizes 𝑆(𝑘).



vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Example. Choosing the Number of Clusters

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Number of clusters K=4



vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Code Exercise (K-means Clustering )

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Task 1 (Manual Calculation)

You are given the following 6 two-dimensional points:

(1,1),(2,1),(4,3),(5,4),(6,5),(8,7) 

Perform one full iteration of the k-means algorithm with k=2:

1.Choose initial centroids as C1=(1,1) and C2=(8,7).

2.Assign each point to the closest centroid (Euclidean distance).

3.Compute the new centroids of the formed clusters.

Show all intermediate calculations (distances, assignments, centroid updates).

Task 2 (Python Implementation)

Implement k-means clustering in Python from scratch for a 2D dataset of at least 10 points.

Steps to include in your code:

• Randomly initialize centroids.

• Assign each point to the nearest centroid.

• Recompute centroids.

• Repeat until centroids do not change significantly.

• Plot the points and cluster centroids using matplotlib.

Task 3 (Comparison with sklearn)

Generate a synthetic dataset using make_blobs from sklearn.datasets with three 

clusters.

Apply: 

• Your own custom implementation of k-means from Task 2.
• The built-in KMeans from sklearn.

Compare:

• The final centroids.

• The number of iterations until convergence.

• The visualization of clusters.

Link to the task:
https://colab.research.google.com/drive/1kXymA2FGd1-

WJgVYSmjXrwdo5FxQKXsY?usp=sharing

https://colab.research.google.com/drive/1kXymA2FGd1-WJgVYSmjXrwdo5FxQKXsY?usp=sharing
https://colab.research.google.com/drive/1kXymA2FGd1-WJgVYSmjXrwdo5FxQKXsY?usp=sharing
https://colab.research.google.com/drive/1kXymA2FGd1-WJgVYSmjXrwdo5FxQKXsY?usp=sharing


vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

General Idea of Hierarchical Clustering

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Hierarchical clustering is a method of cluster analysis that builds a hierarchy of clusters rather than producing just a single 

partition of the data. Unlike k-means, which requires us to predefine the number of clusters, hierarchical clustering can 

reveal the structure of the data at different levels of granularity.

• Agglomerative (bottom-up): Each observation starts as its own 

cluster, and pairs of clusters are merged step by step until all data 

points belong to one single cluster.

• Divisive (top-down): All data points start in one cluster, and the 

cluster is recursively split into smaller clusters until each observation 

is separate.

In practice, agglomerative clustering is most commonly used because it 

is conceptually simpler and easier to compute.

The result of hierarchical clustering is often represented as a 

dendrogram – a tree-like diagram that shows how clusters are merged 

(or divided) at each step. 

By "cutting" the dendrogram at a chosen level, we can decide how 

many clusters to form.



vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Definition of ∣𝐶𝑖∣

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

In hierarchical clustering, when we cut the dendrogram at a chosen height, we 

obtain a set of clusters.

Let’s denote them as: 𝐶={𝐶1,𝐶2,…,𝐶𝑘},

• 𝑘 is the number of clusters formed after the cut.

• 𝐶𝑖 represents the i-th cluster.

• ∣𝐶𝑖∣ denotes the cardinality (size) of cluster 𝐶𝑖.

In other words, ∣𝐶𝑖∣ is simply the number of data points (observations) that belong 

to the cluster 𝐶𝑖.

Example
Suppose we cut the dendrogram at some level and obtain 3 clusters:

So the total number of points is preserved:

where 𝑛 is the total number of observations in the dataset.



vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Agglomerative Hierarchical Clustering – Step-by-Step

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

• Initialization: Start with each data point as its own cluster.

• Compute Distances: Calculate the distance between every pair 

of clusters (initially between individual points).

• Merge Closest Clusters: Find the two clusters with the smallest 

distance and merge them into a new cluster.

• Update Distances: Recalculate the distances between the new 

cluster and all remaining clusters.

• Repeat: Continue steps 3–4 until all points are merged into one 

cluster.

The key factor is how we define the "distance" between clusters. 

Common linkage methods include:

• Single linkage: distance between the closest members of two 

clusters.

• Complete linkage: distance between the farthest members of 

two clusters.

• Average linkage: average distance between all members of two 

clusters.

• Ward’s method: minimizes the total within-cluster variance 

(often preferred in practice).

Let us consider two sets of points: 

The distance between two points:

Single Linkage. We take the closest pair of points between 

two clusters:

Complete Linkage. We take the farthest pair of points 

between two clusters:

Average Linkage. We take the average distance between all 

pairs of points:

Ward’s Method. Merge clusters that minimize the increase in 

total within-cluster variance:

where ഥ𝑥𝑖 and ഥ𝑥𝑗 are the centroids (mean vectors) of clusters 𝐶𝑖 and 

𝐶𝑗



vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Example. Agglomerative Hierarchical Clustering using Single Linkage

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Given X={1,2,3,8,9}

We'll perform clustering "by hands", showing all steps: initial 

distances, merging decisions, updating the distance matrix using 

single linkage:

Step 1: Understanding the Setup

Agglomerative Hierarchical Clustering:

• Starts with each point as its own cluster.

• Iteratively merges the two closest clusters.

• Continues until all points are in one cluster.

Single Linkage:

• Distance between two clusters

• That is, the minimum distance between any two points, one 

from each cluster. 

• Data as 1D points, so distance is absolute difference:   

     d(xi,xj)=∣xi − xj∣

Step 2: Initial Clusters

Each point is its own cluster: 

Step 3: Compute Initial Distance Matrix
We compute pairwise distances between clusters (each singleton now):

We only need the lower triangle. Let's find the minimum non-zero 

distance.

Pairs with distance 1:

{1}–{2}, {2}–{3}, {8}–{9}

We can pick any of them. Let's pick the leftmost pair: 

{1} and {2}.



vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Example. Agglomerative Hierarchical Clustering using Single Linkage

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Step 4: Merge {1} and {2} → New Cluster {1,2}
Now clusters are:

{1,2}, {3}, {8}, {9}

Update distance matrix using single linkage:

Compute distances from {1,2} to others:

d({1,2},{3})=min(∣1−3∣,∣2−3∣)=min(2,1)=1

d({1,2},{8})=min(∣1−8∣,∣2−8∣)=min(7,6)=6

d({1,2},{9})=min(∣1−9∣,∣2−9∣)=min(8,7)=7

Other distances remain the same.

New distance matrix:

Minimum distance = 1 Pairs: {1,2}–{3}, {8}–{9}

We can merge either. Let's merge {1,2} and {3} → {1,2,3}

Step 5: Merge {1,2} and {3} → {1,2,3}
Now clusters: {1,2,3}, {8}, {9}

Update distances:

d({1,2,3},{8})=min(∣1−8∣,∣2−8∣,∣3−8∣)=min(7,6,5)=5

d({1,2,3},{9})=min(∣1−9∣,∣2−9∣,∣3−9∣)=min(8,7,6)=6

Distance between {8} and {9}: ∣8−9∣=1

New matrix:

Minimum distance = 1 → between {8} and {9}

Merge {8} and {9} → {8,9}



vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Example. Agglomerative Hierarchical Clustering using Single Linkage

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Step 6: Merge {8} and {9} → {8,9}

Now clusters: {1,2,3}, {8,9}

Compute distance between them:

d({1,2,3},{8,9})=min(∣x−y∣ for x∈{1,2,3},y∈{8,9})

=min(∣1−8∣,∣1−9∣,∣2−8∣,∣2−9∣,∣3−8∣,∣3−9∣)
=min(7,8,6,7,5,6)=5

So distance = 5

Step 7: Final Merge

Only two clusters left: {1,2,3} and {8,9}, distance = 5 

merge them.

Final cluster: {1,2,3,8,9}

Conclusion
Using single linkage, the clustering naturally separates the data into two 

natural groups:

Left cluster: {1,2,3} (close together)

Right cluster: {8,9} (close together)

With a large gap (from 3 to 8) of 5 units, which is the final merge distance.



vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Python - sklearn.cluster.AgglomerativeClustering

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Parameter / Attribute Type / Options Description

n_clusters int (default=2) The number of clusters to form after the merging process.

metric

str or callable 

(available from 

sklearn ≥ 1.2)

The distance metric to use for computing pairwise distances between samples. 

Default is 'euclidean'.

linkage
'ward', 'complete', 

'average', 'single'

The linkage criterion that determines the distance between clusters: 

• 'ward' — minimizes within-cluster variance (only compatible with euclidean), 

• 'complete' — maximum pairwise distance, 

• 'average' — average pairwise distance, 

• 'single' — minimum pairwise distance.

compute_full_tree bool or 'auto'
If True, builds the full linkage tree; 

if False, stops early once the desired number of clusters is reached.

distance_threshold float or None If set, clustering stops at a specified distance threshold, and n_clusters is ignored.

compute_distances bool If True, stores the distances between merged clusters (useful for dendrogram construction).

Class methods

.fit(X) — Fits the hierarchical clustering model to the dataset X.

.fit_predict(X) — Performs model fitting and returns cluster labels for each observation.

.labels_ ndarray Cluster labels for each sample after fitting.

.n_clusters_ int The number of clusters found by the algorithm.

.distances_ ndarray Distances between clusters merged at each step (available if compute_distances=True).



vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Example

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"



vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Python - scipy.cluster.hierarchy.linkage

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Parameter / 

Attribute
Type / Options Description (in English)

y
ndarray or array of 

observations

Input data. Can be either: 

• an observation matrix of size (n × m); 

• a condensed (flattened) distance matrix representing pairwise distances 

between points.

method str

The linkage method used to compute distances between clusters: 

• 'single' — minimum distance (produces a chaining effect); 

• 'complete' — maximum distance (forms compact clusters); 

• 'average' — average pairwise distance; 

• 'ward' — minimizes within-cluster variance; 

• 'centroid', 'median', 'weighted' — alternative variants.

metric str
The distance metric to compute pairwise distances between points, e.g. 

'euclidean', 'cityblock', 'cosine', 'chebyshev', etc.

optimal_ordering bool (default=False)
If True, the leaf order in the dendrogram is optimized to improve the visual 

layout and interpretability.

Output ndarray (linkage matrix)

Returns an array of shape (n−1) × 4, where each row describes a merging step: 

1️⃣ index of the first cluster, 

2️⃣ index of the second cluster,

3️⃣ distance between them, 

4️⃣ number of observations in the newly formed cluster.



vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Python - scipy.cluster.hierarchy.dendrogram

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Parameter / 

Attribute
Type / Options Description

Z ndarray The linkage matrix produced by the linkage() function.

p int or None
The number of clusters or the truncation level of the dendrogram. Used 

together with the truncate_mode parameter.

truncate_mode 'lastp', 'level', or None

Defines how to truncate the dendrogram: 

• 'lastp' — shows only the last p merges; 

• 'level' — displays the tree up to a specified depth.

labels list or ndarray Labels (names) of the leaves — useful for displaying actual point values.

color_threshold float or None
The distance threshold at which to apply color differentiation between 

clusters.

leaf_rotation float The rotation angle of the leaf labels (for better readability).

leaf_font_size float The font size of the leaf labels.

orientation 'top', 'bottom', 'left', 'right' Orientation of the dendrogram.

no_labels bool If True, leaf labels are not displayed.

Return value dict
A dictionary containing coordinates of branches, colors, and node identifiers — 

useful for visualization and further analysis.



vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Example

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"



vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

sklearn.cluster.AgglomerativeClustering VS 

scipy.cluster.hierarchy

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Feature scipy.cluster.hierarchy sklearn.cluster.AgglomerativeClustering

Output Dendrogram, linkage (merge) matrix Cluster labels only

Tree visualization Available (via dendrogram)
Not directly available (can be 
reconstructed using distances_)

Ease of use
More flexible for analytical 

exploration
Simpler for practical clustering tasks

Orientation
Focused on analyzing cluster 

structure
Focused on automatic cluster assignment

Integration in ML pipelines Limited Fully integrated with scikit-learn



vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Comparative Table for the Use of Metrics

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Metric Purpose

Applicable 

Clustering 

Methods

Library Method / Function Main Parameters Comment

Inertia

Measures cluster 

compactness — the 

sum of squared 

distances from all 

points to their 

nearest centroid.

K-Means scikit-learn
KMeans.inertia_ 

(attribute after fit)
–

Used to determine 

the optimal 

number of clusters 

(elbow method).

Silhouette 

Coefficient (per 

sample)

Evaluates how well 

each data point fits 

within its assigned 

cluster (inter-cluster 

quality).

K-Means, 

Agglomerative 

Clustering, 

DBSCAN, 

SOM

scikit-learn
silhouette_samples(X, 

labels)

metric='euclidean' 

(default), 

alternatives: 

'manhattan', 'cosine'

Returns an array of 

silhouette values 

for individual 

samples.

Mean Silhouette 

Score

Provides an overall 

assessment of 

clustering quality 

(average of 

individual silhouette 

scores).

K-Means, 

Agglomerative 

Clustering, 

DBSCAN

scikit-learn silhouette_score(X, labels)

metric='euclidean', 

sample_size=None, 

random_state=None

The score ranges 

from -1 to 1; values 

closer to 1 indicate 

better-defined 

clusters.



vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Task 1 (Manual Calculation)   Task 2 (Python Coding - Basic 
        Implementation)

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

You are given the following one-dimensional data points:

X={2,5,8,11,16}

Perform Agglomerative Hierarchical Clustering using Single Linkage (minimum distance between 
clusters) step by step, as we did in class.

1.Start with each point as its own cluster.

2.Compute the initial pairwise distance matrix (using absolute difference).

3.At each step:

• Identify the two closest clusters.

• Merge them into a new cluster.

• Update the distance matrix using single linkage.

4.Continue until all points are in one cluster.

Deliverables:

•Show the distance matrix at each step.

•Clearly state which clusters are merged and at what distance.

•Draw or describe the resulting dendrogram (label merge heights).

•Based on the dendrogram, list the clusters if you were to choose 2 final clusters.

Write a Python script to perform Agglomerative Hierarchical Clustering on the 
dataset:

X=[2,5,8,11,16]

Instructions:

Use scipy.cluster.hierarchy to:

1. Compute the linkage matrix using single linkage and Euclidean distance.

• Plot a clear dendrogram with labeled leaves (show the actual 

values: 2, 5, 8, 11, 16).

• Set appropriate labels and title.

2. Repeat the process using complete linkage.

3. Display both dendrograms side by side for comparison.

Deliverables:

• Your full Python code.

• The two dendrogram plots.

• A short written comparison (2–3 sentences): How do the clustering 

structures differ? Which method results in higher merge distances?



Let’s proceed to the practical exercises

link:
https://colab.research.google.com/drive/10cJAbEwZOc4oF

MYgfSS38fGMXRJS2ZhO?usp=sharing

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

https://colab.research.google.com/drive/10cJAbEwZOc4oFMYgfSS38fGMXRJS2ZhO?usp=sharing
https://colab.research.google.com/drive/10cJAbEwZOc4oFMYgfSS38fGMXRJS2ZhO?usp=sharing


vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

REFERENCES

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

1. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An introduction to statistical learning: 

With applications in R (2nd ed.). Springer. https://doi.org/10.1007/978-1-0716-1418-1

2. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, 

inference, and prediction (2nd ed.). Springer. https://doi.org/10.1007/978-0-387-84858-7

https://doi.org/10.1007/978-1-0716-1418-1
https://doi.org/10.1007/978-1-0716-1418-1
https://doi.org/10.1007/978-1-0716-1418-1
https://doi.org/10.1007/978-1-0716-1418-1
https://doi.org/10.1007/978-1-0716-1418-1
https://doi.org/10.1007/978-1-0716-1418-1
https://doi.org/10.1007/978-1-0716-1418-1
https://doi.org/10.1007/978-1-0716-1418-1
https://doi.org/10.1007/978-1-0716-1418-1
https://doi.org/10.1007/978-0-387-84858-7?spm=a2ty_o01.29997173.0.0.786ec9215yNCIY
https://doi.org/10.1007/978-0-387-84858-7?spm=a2ty_o01.29997173.0.0.786ec9215yNCIY
https://doi.org/10.1007/978-0-387-84858-7?spm=a2ty_o01.29997173.0.0.786ec9215yNCIY
https://doi.org/10.1007/978-0-387-84858-7?spm=a2ty_o01.29997173.0.0.786ec9215yNCIY
https://doi.org/10.1007/978-0-387-84858-7?spm=a2ty_o01.29997173.0.0.786ec9215yNCIY
https://doi.org/10.1007/978-0-387-84858-7?spm=a2ty_o01.29997173.0.0.786ec9215yNCIY
https://doi.org/10.1007/978-0-387-84858-7?spm=a2ty_o01.29997173.0.0.786ec9215yNCIY
https://doi.org/10.1007/978-0-387-84858-7?spm=a2ty_o01.29997173.0.0.786ec9215yNCIY
https://doi.org/10.1007/978-0-387-84858-7?spm=a2ty_o01.29997173.0.0.786ec9215yNCIY

	Slide 1: CLUSTERING:  K-means, Hierarchical Clustering 
	Slide 2: 1. Clustering
	Slide 3: Why Do We Cluster?
	Slide 4: A Clustering Model
	Slide 5: Main types of clustering algorithms
	Slide 6: K-Means Clustering
	Slide 7: The k-Means Algorithm (Lloyd’s algorithm)
	Slide 8: Example of K-means Clustering (manual calculation)
	Slide 9: Example of K-means Clustering (Python)
	Slide 10: sklearn.cluster.KMeans
	Slide 11: sklearn.cluster.KMeans
	Slide 12: Choosing the Number of Clusters
	Slide 13: Example. Choosing the Number of Clusters
	Slide 14: Code Exercise (K-means Clustering )
	Slide 15: General Idea of Hierarchical Clustering
	Slide 16: Definition of ∣𝐶𝑖∣
	Slide 17: Agglomerative Hierarchical Clustering – Step-by-Step
	Slide 18: Example. Agglomerative Hierarchical Clustering using Single Linkage
	Slide 19: Example. Agglomerative Hierarchical Clustering using Single Linkage
	Slide 20: Example. Agglomerative Hierarchical Clustering using Single Linkage
	Slide 21: Python - sklearn.cluster.AgglomerativeClustering
	Slide 22: Example
	Slide 23: Python - scipy.cluster.hierarchy.linkage
	Slide 24: Python - scipy.cluster.hierarchy.dendrogram
	Slide 25: Example
	Slide 26: sklearn.cluster.AgglomerativeClustering VS scipy.cluster.hierarchy
	Slide 27: Comparative Table for the Use of Metrics
	Slide 28: Task 1 (Manual Calculation)    Task 2 (Python Coding - Basic          Implementation)
	Slide 29: Let’s proceed to the practical exercises  link: https://colab.research.google.com/drive/10cJAbEwZOc4oFMYgfSS38fGMXRJS2ZhO?usp=sharing  
	Slide 30: REFERENCES

