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1. Clustering

Clustering is one of the most widely used techniques for exploratory data analysis. Across all disciplines,
from social sciences to biology to computer science, people try to get a first intuition about their data by

identifying meaningful groups among the data points.

Definition of Clustering

Clustering is a fundamental task in unsupervised machine learning. It involves grouping a collection of
objects (data points) into subsets or “clusters,” such that data points in the same cluster are more similar
(according to some distance or similarity metric) to each other than to those in other clusters.

Unlike supervised learning, where models are trained using labeled data, clustering operates without

predefined labels. The goal is to uncover the underlying structure or distribution in the dataset.
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Why Do We Cluster?

Clustering is used to:
» Discover natural groupings or patterns in data.

* Reduce the complexity of data.

* Preprocess data for other machine learning tasks such as classification.

* Provide insight or structure in exploratory data analysis.

Clustering (Unsupervised) Classification (Supervised)

Input Data Unlabeled Labeled (input features + class labels)
Goal Find structure/groups Assign data to predefined classes
Output Cluster assignments (no meaning a priori) Class labels (with known meanings)
Example Grouping news articles by topic Classifying emails as spam or not spam
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A Clustering Model

Clustering tasks can vary in terms of both the type of input they have and the type of outcome they are
expected to compute. For concreteness, we shall focus on the following common setup:

A set of elements X and a distance function over it.
That is, a function d : X xX —R, that is symmetric,

Input

satisfies d(x, x) = 0 for all x € X.

Additionally, some clustering algorithms also require
an input parameter k (determining the number of

required clusters).
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Output

A partition of the domain set X into subsets.

 Thatis, C=(C,,...C, ) where U]k=1 Ci = X and
foralli=j, C;nC;=0.

* The partition of X into the different clusters is
probabilistic where the output is a function

assigning to each domain point, x € X, a vector
(p1(X),. . ., P(X)), where p,(x) = P[x € C, ] is the
probability that x belongs to cluster C .

* The clustering dendrogram which is a hierarchical
tree of domain subsets, having the singleton sets
in its leaves, and the full domain as its root.

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"



Main types of clustering algorithms

Type of Algorithm Examples Main Idea

Objects belong to the cluster with the nearest center

Centroid-based K-means, K-median :
(centroid).

Single linkage, Complete linkage, A hierarchy of clusters is constructed by merging groups

Elibtfeeize (el Average linkage, Ward’s method  based on a proximity (similarity) measure.

Clusters are formed as regions of high point density

Density-based DBSCAN, OPTICS separated by areas of low density (“gaps”).

It is assumed that the data are generated from a mixture

Distribution-based Gaussian Mixture Models (GMM) - /- probabilistic distributions

Clusters are identified based on graph properties
(eigenvalues of the adjacency or Laplacian matrix).

Graph-based (sometimes
considered separately)
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K-Means Clustering

A common approach to clustering defines a cost (or objective) function over a set of possible partitioning.
The goal of the algorithm is to find the partitioning with the lowest cost.

In this way, clustering becomes an optimization problem, where the objective function maps the input data (X, d) and a
proposed clustering solution C=(C,,...,C,) to a positive real value.

K-means Objective Function

« The data is divided into k disjoint clusters C,,...,C,, each represented by a centroid ..

* The objective: minimize the sum of squared distances between each point and the centroid of its cluster.

.
G k-means = Z Z d(:ﬂ JU*T:)E

i—=1 zeC

» Intuition: find centroids p,,...,1, that minimize this distortion.

« Application example: in digital communication, sighals can be approximated by their nearest centroid, reducing

transmission cost while introducing minimal distortion.
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The k-Means Algorithm (Lloyd’s algorithm)

* Finding the true optimal solution is computationally challenging — the problem is NP-hard (and even NP-hard to
approximate within a constant factor).
* Instead, a simple iterative algorithm is typically applied.

» In fact, in many contexts, the term k-means clustering refers to the result of this iterative process, rather than the exact

d

> (@ — yr)?

k=1

global minimum of the k-means cost.
- We will present the algorithm assuming the Euclidean distance function: d(x,y) =[x —y| or d(z,y)= J

Input: dataset XcR", number of clusters k

1.Initialize: randomly select k centroids p.,...,Hy. input: X C R” ; Number of clusters k
2.Repeat until convergence: initialize: l-la.ndomly choose mitial centroids py, ..., puy
repeat until convergence
1.Assignment step: for each point xeX, assign it to the cluster with Vi € [k] set C; ={xe X :i=argmin, |x— |}
the nearest centroid (break ties in some arbitrary manner)

Vi € [k] update p; = -5 _ X
2.Update step: recalculate each centroid p; as the mean of all points LG exet

in its cluster C..

57 Lemma. Each iteration of the k-means algorithm does not increase the k-means objective function
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Example of K-means Clustering (manual calculation)

Initial data: mm) Step 1. Initialization
Set of points: X={1,2,7,8} Choose two initial centroids (for example, the first and last points): C’{ﬂ} — 1, CE[-”:' — 8

Number of clusters: k=2

Step 2. First iteration Step 3. Second iteration

Assignment: Assignment with new centroids:

Distance from 1: to C1 =0, to C2 = 7 — assigned to C1 -Distance from 1: to C1 = 0.5, to C2 = 6.5 — C1

Distance from 2: to C1 =1, to C2 = 6 — assigned to C1 :> -Distance from 2: to C1 = 0.5, to C2 = 5.5 — C1

Distance from 7: to C1 = 6, to C2 = 1 — assigned to C2 -Distance from 7: to C1 = 5.5, to C2 = 0.5 — C2

*Distance from 8: to C1 =7, to C2 = 0 — assigned to C2 -Distance from 8: to C1 = 6.5, to C2 = 0.5 — C2

Clusters after assignment: Clusters remain the same:

C1:{1,2},C2:{7,8} C1:{1,2},C2:{7,8}

Update centroids: ¢! = % =15 C= % =75 Centroids do not change: Ci =15, €y’ =715

Step 4. Convergence
Since the centroids did not change after the second iteration, the algorithm converges.
mj Final clusters: Ci:{1,2}, C;:{7,8}
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Example of K-means Clustering (Python)

import numpy as np
import matplotlib.pyplot as plt

# ===
np.random.seed(21) # for reproducibility
X = np.random.rand(108, 2) * 18 # 100 points in range [0,1@)

Step 1. Generate 108 random points in R"2 ===

# === Step 2. K-means implementation ===
def kmeans(X, k=2, max_iters=180, tol=1e-4):
# Randomly choose initial centroids
centroids = X[np.random.choice(X.shape[@], k, replace=False)]
for iteration in range(max_iters):
# Assign each point to the nearest centroid
distances = np.linalg.norm(X[:, np.newaxis]| - centroids, axis=2)
labels = np.argmin(distances, axis=1)
# Compute new centroids
new centroids = np.array([X[labels == j].mean(axis=@) for j in range(k)])

# Check for convergence (if centroids do not move more than tol)
if np.all(np.linalg.norm(new centroids - centroids, axis=1) < tol):
iteration + 1

return labels, new centroids,

centroids = new_centroids

return labels, centroids, max_iters

o
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# Run K-means

labels, centroids, n_iters =

kmeans(X, k=2)

print(f“Convergence reached in {n_iters} iterations.™)

# ===
plt.figure(figsize=(7, 5))

Step 3. Visualization ===

for cluster in range(2):

plt.scatter(X[labels == cluster, @], X[labels == cluster, 1], label=f"Cluster {cluster+l1}™)
plt.scatter(centroids[:, @], centroids[:, 1], c="black”, marker="X", s=208, label="Centroids")
plt.title(f"K-means clustering (Converged in {n_iters} iterations)")

plt.xlabel("X1")
plt.ylabel("X2")
plt.legend()
plt.grid(True)
plt.show()

Convergence reached in 7 iterations.

K-means clustering (Converged in 7 iterations)
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sklearn.cluster.KMeans

Category

Type / Default Value

Description (Academic Style)
Defines the number of clusters to form and the number of centroids to

Parameters n_clusters int, default=8

generate.

init {'’k-means++', ‘random’} or Specifies the method for initializing the centroids. The 'k-means++" method

ndarray, default=k-means++ accelerates convergence.

Determines the number of times the k-means algorithm will be run with

n_init int or 'auto’, default=10 different centroid seeds; the best result is selected based on the inertia
criterion.

max_iter int, default=300 Maximum number of iterations of the algorithm for a single run.

tol float, default=1e-4 Relative tolerance with respect to inertia to declare convergence.

random_state

int, RandomState instance or
None, default=None

Ensures reproducibility of results when the initialization is random.

Specifies the algorithm to use: Lloyd (standard) or Elkan (more efficient for

algorithm {'lloyd’, 'elkan}, default="lloyd dense datasets).
copy_x bool, default=True Determmgs whether the input data is copied or modified in place during the
computation.
. None or int, default=None e . .
n_jobs (deprecated) Specifies the number of parallel jobs to run for computation.
. : : Determines the number of samples to randomly select for centroid
init_size int or None, optional

initialization when using mini-batch variants.
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sklearn.cluster.KMeans

Category Name Type / Default Value Description (Academic Style)

. ndarray of shape . o
Attributes cluster_centers_ Coordinates of the cluster centers after training.
(n_clusters, n_features)

ndarray of shape
labels_ Labels of each point, indicating the assighed cluster.
(n_samples,)

Sum of squared distances of samples to their closest cluster center —

inertia_ float .

used as a measure of internal cluster compactness.
n_iter_ int Number of iterations performed during the final run.
n_features_in_ int Number of features seen during fitting.

~ ndarray of shape S .
feature_names_in_ . Names of features seen during fitting (if input is a DataFrame).
(n_features_in_,)

o
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Choosing the Number of Clusters

Determining the optimal number of clusters, K, is an important task in K-means clustering.

Elbow method Silhouette analysis
Idea: Analyze the reduction in the sum of squared Idea: Measure how well objects are clustered
errors (SSE) with increasing number of clusters. compared to neighboring clusters.
2 For object i: b(i :
SSE(k Z > e — il 5(i) = () — a(i)
i=1 2€C; max{a(i),b(i)}
where C, is the i-th cluster and y, its centroid where
a(i) = average distance from i to all other points in the same
cluster,
Algorithm: b(i) = minimum average distance from i to points in other clusters.
* For k=1,2,...,K, . run clustering and compute SSE(k).  The overall silhouette score (Mean Silhouette Score):
 Plot SSE(k) Vs k. 1 ~— .
| | S(k)==>s(i)
* Choose k at the “elbow” point — where the decrease in  Algorithm: i
SSE slows down. * For k=2,3,...,,K, .. run clustering.
« Compute 51lhouette score S(k).
mj * Choose k that maximizes S(k).
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Example. Choosing the Number of Clusters

# === 2. Elbow Method ===
Initial Data (no clusters) inertia = []
K_range = range(2, 11)
10 4 for k in K_range:
kmeans = KMeans(n_clusters=k, random_state=42, n_init=18@)
kmeans.fit(X)
inertia.append(kmeans.inertia )
5-.
[}
v ® plt.figure(figsize=(12, 5))
=
3
- 0+ plt.subplot(1l, 2, 1)
plt.plot(K_range, inertia, 'bo-")
plt.xlabel({"Number of clusters (k)")
-5 plt.ylabel{"Inertia (WCS5)")
plt.title("Elbow Method"™)
plt.grid(True)
101 - - ~ - ~ - - Elbow Method
-10.0 =75 =50 =25 0.0 2.5 5.0 7.5
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= 3. Silhouette Method
ouette scores = []

k in K_range:

kmeans = KMeans(n_clusters=k, random state=42, n_init=18)
labels = kmeans.fit predict(X)

score = silhouette score(X, labels)

silhouette scores.append(score)

subplot(1l, 2, 2)

plot(K _range, silhouette scores, 'ro-')

.x1label("Number of clusters (k)")
.ylabel("Silhouette Score")
.title("Silhouette Method")
.grid(True)

.tight layout()

show()

Silhouette Method
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Code Exercise (K-means Clustering )

Task 1 (Manual Calculation)

You are given the following 6 two-dimensional points:
(1,1),(2,1),(4,3),(5,4),(6,5),(8,7)

Perform one full iteration of the k-means algorithm with k=2:

1.Choose initial centroids as C1=(1,1) and C2=(8,7).

2.Assign each point to the closest centroid (Euclidean distance).

3.Compute the new centroids of the formed clusters.

Show all intermediate calculations (distances, assighments, centroid updates).

Task 2 (Python Implementation)

Implement k-means clustering in Python from scratch for a 2D dataset of at least 10 points.
Steps to include in your code:

« Randomly initialize centroids.

« Assign each point to the nearest centroid.

« Recompute centroids.

» Repeat until centroids do not change significantly.

» Plot the points and cluster centroids using matplotlib.

Task 3 (Comparison with sklearn)
Generate a synthetic dataset using make blobs from sklearn.datasets with three
clusters.
Apply:
* Your own custom implementation of k-means from Task 2.
 The built-in KMeans from sklearn. Link to the task:
Compare:
« The final centroids.
« The number of iterations until convergence.
ml - The visualization of clusters.
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General Idea of Hierarchical Clustering

Hierarchical clustering is a method of cluster analysis that builds a hierarchy of clusters rather than producing just a single
partition of the data. Unlike k-means, which requires us to predefine the number of clusters, hierarchical clustering can

reveal the structure of the data at different levels of granularity.

« Agglomerative (bottom-up): Each observation starts as its own
cluster, and pairs of clusters are merged step by step until all data
points belong to one single cluster.

* Divisive (top-down): All data points start in one cluster, and the
cluster is recursively split into smaller clusters until each observation
is separate.

In practice, agglomerative clustering is most commonly used because it
is conceptually simpler and easier to compute.

The result of hierarchical clustering is often represented as a
dendrogram - a tree-like diagram that shows how clusters are merged
(or divided) at each step.

By “cutting” the dendrogram at a chosen level, we can decide how
many clusters to form.
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Definition of |C||

In hierarchical clustering, when we cut the dendrogram at a chosen height, we

obtain a set of clusters.

Let’s denote them as: C={C,,(C,,...,C,},

« k is the number of clusters formed after
« (, represents the i-th cluster.

* |C,| denotes the cardinality (size) of cluster C..

In other words, |C,| is simply the number of
to the cluster C,.
Example

Suppose we cut the dendrogram at some level and obtain 3 clusters:

C) = {ﬂi'h Ly, IT}& Cy = {’if?}ir:;}ﬁ

. |y =3
. Cg =2
e |C3] =4

So the total number of points is preserved:

where n is the total number of observations in the dataset.

o
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Agglomerative Hierarchical Clustering - Step-by-Step

Initialization: Start with each data point as its own cluster.
Compute Distances: Calculate the distance between every pair
of clusters (initially between individual points).

Merge Closest Clusters: Find the two clusters with the smallest
distance and merge them into a new cluster.

Update Distances: Recalculate the distances between the new
cluster and all remaining clusters.

Repeat: Continue steps 3-4 until all points are merged into one
cluster.

The key factor is how we define the "distance” between clusters.
Common linkage methods include:

Single linkage: distance between the closest members of two
clusters.

Complete linkage: distance between the farthest members of
two clusters.

Average linkage: average distance between all members of two
clusters.

Ward’s method: minimizes the total within-cluster variance
(often preferred in practice).

o
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Let us consider two sets of points:

C-i — {1Ei11 Li2y .- amim}z

The distance between two points:

Single Linkage. We take the closest pair of points between
two clusters:

D:‘-}iugle(ch C;) = min d(.’fﬂ .“y’)

xeC;, yeCj

Complete Linkage. We take the farthest pair of points
between two clusters:

Dmmplete(aiacj) = max d(:ﬂ, y)

fid (-T.' 1 UE{?,I

Average Linkage. We take the average distance between all
pairs of points:

1
D average C-f':- C;) = d . .
s G G3) = [T 1G] 22 2 40

xeC; yelj

Ward’s Method. Merge clusters that minimize the increase in
total within-cluster variance:

_ |G| - 1G]
Ci| +|C;j

Dwara(Ci, C;)

|2 — 211,

where X; and ¥;
Cj
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Example. Agglomerative Hierarchical Clustering using Single Linkage

Given X={1,2,3,8,9} Step 3: Compute Initial Distance Matrix

We compute pairwise distances between clusters (each singleton now):

We'll perform clustering "by hands”, showing all steps: initial
distances, merging decisions, updating the distance matrix using

{1 {2} {3} {8} {9}

single linkage: n 0 : 2 : :
Step 1: Understanding the Setup

Agglomerative Hierarchical Clustering: @ 1 0 1 : 7
« Starts with each point as its own cluster.

 lteratively merges the two closest clusters. & : | ° : :

« Continues until all points are in one cluster.
Single Linkage:

{8} 7 6 5 0 1

« Distance between two clusters Dsingle(Ci, Cj) = . gli;g o d(z,y). o) : . 6 1 :
« That is, the minimum distance between any two points, one
from each cluster. We only need the lower triangle. Let's find the minimum non-zero
distance.

« Data as 1D points, so distance is absolute difference:

d(x;,X;)=/X; = X;/ Pairs with distance 1:

Step 2: Initial Cl U323, 123133, 183193
eb i nibia s ers We can pick any of them. Let's pick the leftmost pair:
Each point is its own cluster: £17 and £21.

C, = {1}, C, = {2}, C3 = {3}, Cs = {8}, C5 = {9}

o
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Example. Agglomerative Hierarchical Clustering using Single Linkage

Step 4: Merge {1} and {21 — New Cluster {1,2}

Now clusters are:

1,2}, 135, 183, 193

Update distance matrix using single linkage:
Compute distances from {1,2} to others:
d({1,2},{3})=min(|1-31,12-3])=min(2,1)=1
d({1,2},{8})=min(|1-81,12-8])=min(7,6)
d({1,2},{9})=min(|1-91,12-91)=min(8,7)=7
Other distances remain the same.

New distance matrix:

{1.2} {3} {8}
{1.2} 0 1 6
{3} 1 0 5
{8} 6 5 0
{9} 7 6 1

Minimum distance = 1 Pairs: {1,2}-{3}, {8}-{9}
We can merge either. Let's merge {1,2} and {3} — {1,2,3}

o

{9

Step 5: Merge {1,2%} and {3} — {1,2,3}
Now clusters: {1,2,3}, {8}, {9}

Update distances:
d({1,2,33},{8})=min(|1-8l,|2-81,13-8])=min(7,6,5)=
d({1,2,3},{9})=min(11-91,12-91,13-91)=min(8,7,6)
Distance between {8} and {9}: 18-9|=1

1]
oy Ul

New matrix:
1,2,3} {8} {9}
{1.2,3} 0 5 6
{8} 5 0 1
{9} 6 1 0

Minimum distance = 1 — between {8} and {9}
Merge {8} and {9} — {8,9}
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Example. Agglomerative Hierarchical Clustering using Single Linkage

Step 6: Merge {8} and {9} N {8,9} Dendrogram - Agglomerative Clustering (Single Linkage)
Now clusters: {1,2,3}, {8,9} >
Compute distance between them: .

d({1,2,3},{8,9})=min(Ix-y| for xe{1,2,3},y€{8,9})
=min(|1-8l,11-91,12-81,12-91,13-81,13-9|)
=min(/,8,6,7,5,6)=5

So distance =5

L
1

Euclidean Distance

fJ
1

12,3} {8,9}
(1,2,3) 0 5 M
6 ’ ’ ’ 3 1 2 8 9
Data Points
Step 7: Final Merge Conclusion
Only two clusters left: {1,2,3} and {8,9}, distance =5 Using single linkage, the clustering naturally separates the data into two

natural groups:

Left cluster: {1,2,3} (close together)

Right cluster: {8,9} (close together)

With a large gap (from 3 to 8) of 5 units, which is the final merge distance.

merge them.
Final cluster: {1,2,3,8,9}

o
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Python - sklearn.cluster.AgglomerativeClustering

Parameter / Attribute Type / Options

Description

n_clusters int (default=2) The number of clusters to form after the merging process.
: str or callable The distance metric to use for computing pairwise distances between samples.
metric (available from . : .
Default is ‘euclidean’.
sklearn > 1.2)
The linkage criterion that determines the distance between clusters:
. o .« ‘'ward' — minimizes within-cluster variance (only compatible with euclidean),
. ward’, ‘complete’, . : o .
linkage e ‘complete’ — maximum pairwise distance,

‘average’, ‘single’

e 'average’ — average pairwise distance,
e 'single’ — minimum pairwise distance.

compute_full_tree

bool or 'auto’

If True, builds the full linkage tree;
if False, stops early once the desired number of clusters is reached.

distance_threshold

float or None

If set, clustering stops at a specified distance threshold, and n_clusters is ignored.

compute_distances bool If True, stores the distances between merged clusters (useful for dendrogram construction).
Class methods

Jit(X) — Fits the hierarchical clustering model to the dataset X.

fit_predict(X) — Performs model fitting and returns cluster labels for each observation.

labels_ ndarray Cluster labels for each sample after fitting.

.n_clusters_ int The number of clusters found by the algorithm.

.distances_ ndarray Distances between clusters merged at each step (available if compute_distances=True).

o/
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[[ ©.82006925 3.12347344]
Example [-8.3625466  2.8579214 ]
[-0.44896524 £.1387@799]
[-7.83321759 5.93555448]
import numpy as np [-8.54204811 6.90245485]
import matplotlib.pyplot as plt %'9-995493?8 1'@49543?1}
. -5.89112851 6.58997123
from sklearn.datasets import make blobs [-0.2472635  1.98220823]
from sklearn.cluster import AgglomerativeClustering [-6.45720895 8.92332513]
[-2.68165985 12.85797364]
# ___ Teuepyemo wTyuHi pami --- [-8.84531485 7.31594834]
X, = make blobs(n_samples=28, n_features=2, centers=3, cluster std=2.5, random state=5 [-3.88298359  6.73328903]
] [-5.71775629 7.46394096]
print(X) [-9.72210879 5.66419853]
# --- lepapxi4yHa knacTepuzayia --- [-5.85739479 8.18739205]
model = AgglomerativeClustering(n_clusters=3, linkage='complete’) [-3.37451733 18.15327134]
labels = model.fit predict(X) [-8.31713661  6.23008527 ]
[-5.28611197 11.37084892]
[ 8.262374 5.57199869]
# --- Bizyanizauia --- [-9.64356579 9.98433694]]
plt.scatter(X[:, @], X[:, 1], c=labels, cmap="rainbow’, s=88) Agglomerative Clustering (Complete Linkage)
plt.title("Agglomerative Clustering (Complete Linkage)") . °
plt.xlabel{"X,") )
1t.ylabel{"X,"
p Y ("X2") 104 @ ®
plt.show()
o
. : : 8 1 o
print("MiTtku knacTepie:”, labels) ° P
® [ ]
2 ° ®
51 o ®
4_
2_
MiTkw knacTepie: [1 11 2 2181686 26e6e26662a12]
~10 -8 6 4 -

o
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Python - scipy.cluster.hierarchy.linkage

Parameter /
Attribute

Type / Options Description (in English)

Input data. Can be either:
ndarray or array of e an observation matrix of size (n x m);
observations e a condensed (flattened) distance matrix representing pairwise distances
between points.

The linkage method used to compute distances between clusters:
e 'single’ — minimum distance (produces a chaining effect);

e ‘complete’ — maximum distance (forms compact clusters);

e '‘average’ — average pairwise distance;

o 'ward’ — minimizes within-cluster variance;

e ‘centroid’, ‘'median’, ‘'weighted' — alternative variants.

method str

The distance metric to compute pairwise distances between points, e.g.

metric str ‘euclidean’, ‘cityblock’, ‘cosine’, ‘chebyshev’, etc.

If True, the leaf order in the dendrogram is optimized to improve the visual
layout and interpretability.

Returns an array of shape (n-1) x 4, where each row describes a merging step:
1] index of the first cluster,

2] index of the second cluster,

3] distance between them,

4| number of observations in the newly formed cluster.

optimal_ordering bool (default=False)

Output ndarray (linkage matrix)

o

LA‘ HTY «/[lHinpoBCbKa nonitexHika» | Kadeapa npukiagHOT MaTeMaTUKK Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"
'.V‘ vm.nmu.org.ua




Python - scipy.cluster.hierarchy.dendrogram

Parameter /
Attribute

Z ndarray The linkage matrix produced by the linkage() function.

Type / Options Description

The number of clusters or the truncation level of the dendrogram. Used

P int or None together with the truncate_mode parameter.

Defines how to truncate the dendrogram:
truncate_mode ‘lastp, ‘level’, or None e 'lastp’ — shows only the last p merges;
 'level' — displays the tree up to a specified depth.

labels list or ndarray Labels (names) of the leaves — useful for displaying actual point values.

color threshold float or None The distance threshold at which to apply color differentiation between

clusters.
leaf_rotation float The rotation angle of the leaf labels (for better readability).
leaf_font_size float The font size of the leaf labels.
orientation ‘top’, ‘bottom’, ‘left’, 'right’ Orientation of the dendrogram.
no_labels bool If True, leaf labels are not displayed.

A dictionary containing coordinates of branches, colors, and node identifiers —

Return value dict useful for visualization and further analysis.

o
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Example

Hierarchical Clustering (Complete Linkage, SciPy)

Macue X:
[[ ©.02006925 3.12347344] 12 1 ®
[-0.3625466 2.8579214 ] ®
import numpy as np [-0.44896524 6.13878799] ®
import matplotlib.pyplot as plt [-7.83321759 5.93555448] 104
from sklearn.datasets import make_ blobs [-8.54204311  6.96245485] @
_ _ , _ [-6.99640878 1.84054871]
from scipy.cluster.hierarchy import linkage, dendrogram, fcluster [-5.09112851 6.58997123] g ®
[-0.2472635 1.982208823] ®
# --- leHepyemo wTy4Hi gaHi --- [-6.45728895 §.92332513] 2 ® ®
X, _ = make _blobs(n_samples=28, n_features=2, centers=3, cluster std=2.5, random state=5) [-2.68165905 12.85797364] 61 b ®
print({"Macue X:\n", X) [-8.084531485 7.31594834]
[-3.88298359 6.79328908]
[-5.71775629 7.46394096] 4
# --- 064umcnenHa maTpuul zB’As3kie (linkage matrix) --- [-9.7221079  5.66419853] ®
Z = linkage(X, method="complete’, metric="euclidean”) [-5.85739479 8.10739205] ®
[-3.37451733 10.15327134] 2 1 ®
# --- Nobyaosa meHAporpamu -- - [-8.31713661 6.23808527] ®
plt.figure(figsize—(10, 5)) [-5.28611197 11.37084892] | | | | | |
[ 8.262374 5.57199869] -10 -8 -6 —4 -2 0
dendrogram(Z, [-9.64356579 9.98433694]] X1
labels=np.arange(l, len{X)+1), # Hymepauia Toyok
leat_rotation=98, ] )
leaf_font size-18, NeHnaporpama (Complete Linkage, SciPy)
color_threshold=8)
plt.title("llengporpama (Complete Linkage, SciPy)") 129
plt.xlabel{"IHaekcu To4ok"™)
plt.ylabel("BipgcTaue 3nuTTA") 10
plt.show()
E g-
# --- Bwginenna knacTepie (Hanpuknag, 3 knacTepum) --- =
labels = fcluster(Z, t=3, criterion="maxclust’) E
print("MiTkwn knactepie:", labels) E 6 -
L=t
# --- Bizyanizayia TOYOK 2 KOMBOpPaMM KnNacTeple --- @
plt.scatter(X[:, @], X[:, 1], c=labels, cmap="rainbow’, s=88) 7
plt.title("Hierarchical Clustering (Complete Linkage, SciPy)}")
plt.xlabel{"X.™) 2 1
plt.ylabel("X;™)
p1t.show() 0 |—|—| 1 [ ] [ ]
mg e = - S &I ¥y 5 " 4 % 8 5 ~ 84 @ @m 9

MiTkw knacTtepie: [1 11 2 2131332332332 312]

o
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sklearn.cluster.AgglomerativeClustering VS
scipy.cluster.hierarchy

Feature scipy.cluster.hierarchy sklearn.cluster.AgglomerativeClustering
Output Dendrogram, linkage (merge) matrix Cluster labels only
Tree visualization Available (via dendrogram) Not directly available (can be

reconstructed using distances )

More flexible for analytical

Ease of use Simpler for practical clustering tasks

exploration

Orientation Focused on analyzing cluster Focused on automatic cluster assignment
structure

Integration in ML pipelines Limited Fully integrated with scikit-learn

o
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Comparative Table for the Use of Metrics

Applicable

Purpose Clustering Library Method / Function Main Parameters Comment
Methods

Measures cluster
compactness — the Used to determine
: sum of squared s KMeans.inertia the optimal
v - - — -

Inertia distances from all 54 K-Means scikit-learn (attribute after fit) number of clusters
points to their (elbow method).
nearest centroid.

Evaluates how well K-Means, Y .
: e : metric="euclidean Returns an array of

Silhouette each data point fits Agglomerative . .

. . e Ls : ) y silhouette_samples(X, (default), silhouette values

Coefficient (per within its assigned  Clustering, scikit-learn o e

: labels) alternatives: for individual
sample) cluster (inter-cluster DBSCAN, manhattan’. ‘cosine’ sambles
quality). SOM ’ PLes.
Provides an overall
The score ranges
assessment of K-Means, L . )
: : : : metric='euclidean’, from -1 to 1; values
Mean Silhouette clustering quality Agglomerative ., . . . o
: scikit-learn silhouette_score(X, labels) sample_size=None, closer to 1 indicate

Score (average of Clustering, random_state=None better-defined

individual silhouette DBSCAN -
clusters.
scores).

o
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Task 1 (Manual Calculation) Task 2 (Python Coding - Basic
You are given the following one-dimensional data points: I m p lementation )

X={2,5,8,11,16] Write a Python script to perform Agglomerative Hierarchical Clustering on the

Perform Agglomerative Hierarchical Clustering using Single Linkage (minimum distance between dataset:
clusters) step by step, as we did in class.

X=[2,5,8,11,16]
1.Start with each point as its own cluster. Instructions:

2.Compute the initial pairwise distance matrix (using absolute difference). Use scipy.cluster.hierarchy to:

3.At each step:

1. Compute the linkage matrix using single linkage and Euclidean distance.

* Identify the two closest clusters. _
* Plot a clear dendrogram with labeled leaves (show the actual

 Merge them into a new cluster. values: 2, 5, 8, 11, 16).
* Update the distance matrix using single linkage. e Set appropriate labels and title.
4.Continue until all points are in one cluster. 2. Repeat the process using complete linkage.

3. Display both dendrograms side by side for comparison.
Deliverables:

*Show the distance matrix at each step. Deliverables:

Clearly state which clusters are merged and at what distance. * Your full Python code.

*Draw or describe the resulting dendrogram (label merge heights). * The two dendrogram plots.

: : , * A short written comparison (2—-3 sentences): How do the clusterin
*Based on the dendrogram, list the clusters if you were to choose 2 final clusters. P ( ) g

o
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Let’s proceed to the practical exercises
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https://colab.research.google.com/drive/10cJAbEwZOc4oFMYgfSS38fGMXRJS2ZhO?usp=sharing
https://colab.research.google.com/drive/10cJAbEwZOc4oFMYgfSS38fGMXRJS2ZhO?usp=sharing
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