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1. Why Dimensionality Reduction?

In modern machine learning, we often deal with high-dimensional data:
A grayscale image of size 100x100 has 10,000 features (pixels).

A document represented by word frequencies (bag-of-words) may have tens of L NG s et B
thousands of features. .
« Genomic datasets can have millions of measurements per sample.
Challenges: R -
1. Curse of Dimensionality I
 As dimensionality increases, the volume of the feature space grows
exponentially. y
« Data points become sparse, making it difficult for models to generalize. 21
« Distance-based methods (like k-NN) lose effectiveness since all points i}
appear equally distant. -0
2. Computational Cost Y
« Training models on thousands of features requires significant memory and
processing time. ]
« Algorithms such as linear regression, clustering, or SVM become slow or 50 25 o 25 5.0

unstable.

3. Visualization

”

&

 Humans cannot easily interpret data in more than 3 dimensions.
« PCA allows projecting high-dimensional data into 2D or 3D, making it

The original dataset does not vary much
along the x, direction. This data can be
represented using the x,-coordinate alone
with nearly no loss

57 possible to visualize clusters, separability, and patterns.
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Example: dataset of handwritten digits (MNIST)
DHI2TE S5 [FT2[B

Each digit image has 784 features (28x28 pixels).

« Training a classifier directly on 784 dimensions is expensive.

* PCA can reduce it to, say, 50 dimensions while preserving ~95% of the variance.
* This results in faster training, less noise, and still accurate recognition.

Example: using the Diabetes dataset from sklearn

Linear Regression with and without PCA

« Diabetes dataset has many correlated features - linear regression may 06 {
become unstable due to multicollinearity.

o o o 0.5 1
» Using PCA, we can reduce the data to a few uncorrelated principal

components, making the regression more stable and sometimes S 04/

improving generalization. :"7’;
age sex bmi bp sl 2 s3 sd 55 sb target ‘3’ 0.3 4

8.8338876 0.058680 ©.06169c 0.821872 -0.844223 -0.834821 -6.843481 -¢.4e2592 @.p19907 -0.017646 151.8 E

-8.001882 -0.044642 -0.051474 -0.826328 -90.0068449 -0.019163 06.674412 _£.839493 -9.P68332 -6.092284 75.08 a
8.885299 0.058680 ©.04445%1 -0.805678 -0.845599 -0.6834194 -8.832356 -.AR2592 QA.PE2E61 -0.025935 141.8 o 0.2

a

1

2

3 -8.089263 -8.944642 -0.011595 -2.836656 ©.812191 2.824991 -2.836038 §.8343069 0.022685 -0.009362 286.8
4 B.885383 -9.0844642 -92.836385 ©.821872 @.883935 0.91559 0©0.883142 -@.802592 -0.831983 -0.046641 135.8
5 -8.092695 -8.0944642 -0.04869: -0.819442 -0.868991 -2.879288 ©0.841277 -§.876395 -0.041176 -0.896346 97.@ 0.1
b -8.845472 ©.858688 -0.947163 -0£.815999 -09.9480096 -2.824800 0.800779 _p_@39493 -0.962917 -8.838357 138.0

7 B.863584 ©.050680 -92.201895 ©.866629 0.899628 ©.108914 0.822B69 £.817703 -0.835816 ©.003064 63.8

8

0.041708 ©.950680 ©.061696 -0.040099 -0.013953 ©0.006202 -0.928674 _0.002592 -0.014960 ©0.811349 1160.0 0.0 - —
9 -9.070900 -0.044642 0.839862 -0.033213 -0.012577 -0.034508 -0.024993 _9.@A2592 0.0657737 -0.013504 310.0 Original (10 features) PCA (2 components)
L
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Problem Setting

We have a dataset of N samples: X = {z,,...,zy}, z,c R”
where each vector has high dimensionality (D features).

« For simplicity, assume the data is centered (mean = 0).

: : : 1
* The covariance matrix describes how features vary together: § = N Z oz, € RP*D,

Goal of PCA:;

* Project data into a lower-dimensional space (M<D)
* Preserve as much of the original variability as possible

* Ensure projected points are “close” to the originals (minimal
reconstruction error).

Intuition: Imagine compressing a high-resolution image into
fewer pixels, while still keeping it recognizable

o
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Compression Idea

Original Reconstructed

RP RY

Compressed
where the columns b, are orthonormal vectors (mutually perpendicular, unit length). RM

We search for a set of projection directions: B = [by,...,by] € R?*M

—

r —— z —»

Encoding step (compression) z, = B 'z, ¢ R
Each original point x, is represented by an M-dimensional code z,.
Decoding step (reconstruction): &, = Bz, = BB'z,

here X,, is the approximation of the original point in the lower-dimensional subspace spanned by b.,...,b,,.

Objective:
Find the matrix B such that: Intuition:
« z, = compressed “code” (like storing fewer
* The variance of the projected data is maximized, coordinates).
OR « B = dictionary/basis that defines the new subspace.
- The reconstruction error ||x, — %,||? is minimized. « PCA guarantees that this compression loses as little
mj information as possible for the chosen dimension M
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Linear Algebra Foundations of PCA

Principal Component Analysis (PCA) is fundamentally a linear algebra method. To understand it deeply, we need to recall
several key concepts.

Vectors, Inner Product, and Orthogonality

» A vector represents a data point in a D-dimensional space:
x =[xy xp .. xp]’ € RP

* The inner product (dot product) measures similarity between two vectors:
D
(xy)=x'y= in Vi
i=1

* The norm (length) of a vector:

|l xll=+vVxTx

 Two vectors are orthogonal if:

(xy)=0
» Orthogonality means they point in independent directions — no shared information.

In PCA, we will find a new orthogonal coordinate system (basis) where data variance is maximized.

o
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Variance and Covariance of Data

Variance of a variable x measures how much data spreads along one Var(z) = %Z(‘Ti 7)?

axis. i=1

Covariance between two variables x and y measures how much two

variables vary together: N

If positive — both increase/decrease together. Cov(z,y) = 1 N (i — #)(y: — )
If negative — one increases, the other decreases. N3

If zero — they are linearly uncorrelated.

Covariance Matrix (The covariance matrix captures how features vary individually and jointly)
For multivariate data X € RY*? (rows = samples, columns = features):

1 _ -
5= NXTX Var(z;)  Cov(zi,z2) ...
Each element s;; of S represents the covariance between features i and j: g = | Cov(za, z1) Var(z2)

we can use either of two conventions:
S = %XZXC (ML convention) - Used in PCA, SVD, and many ML libraries. Here we treat Xc as the whole dataset, not a sample

S = LXCT X, (statistical convention) - Used in statistics when the dataset is considered a sample from a larger population. Dividing by n-1 gives an
n-—1

unbiased estimator

o
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Eigenvalues and Eigenvectors

Key Insight
If we perform eigen-decomposition of the covariance matrix:
Sb; = A;b; 1. PCA = finding orthogonal directions
then:
b; —eigenvectors (principal directions / axes of maximal variance) (basis vectors) that capture

-1; —eigenvalues (amount of variance explained by each axis) , , ,
maximum variance in data.

. , | 1, i=j .. .
The eigenvectors form an orthonormal basis, meaning: b, b; = { 7 2. These directions are eigenvectors

of the covariance matrix.

We can then sort eigenvalues: 1, =21, >+ > A,

The explained variance ratio (for component i) is: 3. The corresponding eigenvalues tell

E.Xp]aincd Variance R.ﬂtiﬂi — {i_':)” X US hOW important eaCh direCtion iS
j=17
This gives the fraction (or percentage) of total variance explained by the i-th principal component (Each eigenvalue tells how much
Select the first M eigenvectors to form: variance that component captures)

B = [bl’ bz’ ’bM]

This matrix B defines the projection into a lower-dimensional subspace:

Z=B"X

4. Total variance in the data = sum of

all eigenvalues

oy
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Decoding (Reconstruction to original space)

The decoded (reconstructed) approximation of the original data is:

X=ZB" =X_BB".

Reconstruction error (per sample)

The reconstruction error vector for the i-th observation is:

— ~ T
e = X¢; — X; = Xc; — BB x¢;.

The squared reconstruction error (per sample) is:

This measures how far the reconstructed point lies from the original point in
the feature space.

Total reconstruction error (Frobenius norm form)

E; =l e; 2=l x.; — BB x¢; II%.

Over all N samples, the total squared reconstruction error is:

N

z

o
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Etotgl =N Xc — X =1l X, — X.BB" II.

Key Insight

Decoding (or Reconstruction) in PCA is the process of
projecting data back from the low-dimensional
principal component space into the original feature
space.

Each reconstructed point lies in the subspace spanned
by the top M eigenvectors — it’s the closest possible
linear approximation (in the least-squares sense) of
the original point using only those M directions of
maximal variance.

Intuitive Summary

 PCA “compresses” data by keeping only the directions
that matter most.

Decoding “unpacks” that compressed representation —
not perfectly, but with minimal possible error among
all rank-M linear reconstructions.

« The reconstruction shows how much information was
preserved by the chosen components.
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PCA Example (2D projection and reconstruction) Criginal 30 Dat:

.F’2

Data 2.00 | oPL
2 01 L5

: : 3 . 3 1 2 1.25

We have N = 4 points in R® (rows are samples): X = 40 0 ' 100 ]
0.75 | . .p4
D'G%'E%-SQ)_? . 4.03.53;:
1 i q'251-501.?52_m 50
: 1
1) Mean vector and centering. Mean (feature-wise): — = Z — [3.5, 0.75, 1.0].
1 =1

Center the data: x( ‘) = X,; — X. The centered data matrix X, (each row a centered sample):

—1.5 —075 0.0
v _|-05 025 10
“~ o5 -075 -10]
|15 125 0.0

o
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Outer-products and covariance matrix

.
Compute outer product x,(f)x,(f) for each sample, then sum and divide by N.

Outer-products for each centered sample:
Sample 1 x(©) = [— 1.5, —0.75,0]:
N 225 1125 —-0.0
x©x() = [1.125 0.5625 —o.o]
-0.0 —-0.0 0
Sample 2 x(©) = [— 0.5 0.25,1.0]:
0.25 —0.125 —-0.5
[—0.125 0.0625 0.25]
—0.5 0.25 1.0
Sample 3 x(© =[0.5 »—0.75, — 1.0]:

025 —-0.375 -0.5 $ 1 1.25 0.625 —0.25
—0.375 0.5625 0.75 S =—Seum=10.625 0.6875 0.25 |.
~05 075 1.0 4 —025 025 05

Sample 4 x(©) =[1.5 ,1.25,0]:
[ 2.25 1.875 0]

Covariance matrix (using 1/N normalization):

1.875 1.5625 0

0 0 0
Sum of outer-products:
5.0 2.5 —1.0]

Ssum=[2-5 2.75 1.0
-1.0 1.0 2.0

o

/./g HTY «/lHinpoBCbKa nonitexHika» | Kadeapa npukiagHOT MaTeMaTUKM Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"
Y8 vm.nmu.org.ua



Eigen-decomposition of S

Solve
Sh; = A;b; Key Insight

Figenvalues (sorted descending) and corresponding eigenvectors (columns): 1. PCA = finding orthogonal directions

(basis vectors) that capture maximum
A = 1.6592492719, A, = 0.75, A = 0.0282507281.
variance in data.

Eigenvectors (columns correspond to A,,1,,43)
2. These directions are eigenvectors of
—0.847037 —0.267261 —0.459456 the covariance matrix.

V =1-0.527035 0.534522 0.660697 |.

0.069011 0.801784 —0.593616

3. The corresponding eigenvalues tell

us how important each direction is

Select top M ts and build B.
elect top M components and bui (Each eigenvalue tells how much

Choose M = 2. The projection matrix B (columns are top-2 eigenvectors): variance that component captures)

—0.847037 —0.267261
B =|b, by] = [—0.527035 0.534522
0.069011 0.801784

4. Total variance in the data = sum of all

E ]R3X2
eigenvalues

o
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Encoding (projecting)

Encoding (projecting) — compute Z = X_.B

Projected coordinates Z (each row is the 2D code z,)

Original 3D Data

2.00
1.75 1
1.50
1.25 1
100 7
0.75 1
0.50 7

0.25 ° ¢’

0.00 T

0.0&2&5&?5) 2 2.0
. .09_2?.5? . _a 3.5
*'2.00

o

e
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[[ 1.66583177 8.

/ = | ©8.36877064 1.969084497 ]
(-8.89725331 -1.33630621]

(-1.9293491  9.26726124 ]

2D Projection (PCA)

.PZ

1.0 1

0.5 1
™ P4
= L ]
2
E_ 0.0 - Pl
S o.
(]
J
m
=
£ —0.5
-
(o'

_]_D .
P3
L
T T T T T T T T
=2.0 -1.5 =1.0 —0.5 0.0 0.5 1.0 1.5

Principal Component 1
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Decoding (reconstruction)

When we compress data to a lower-dimensional space and then decode it back,
i ) some information is inevitably lost.
Decoding (reconstruction) — compute

This loss is quantified by the reconstruction error — how far the reconstructed
data X is from the original centered data X..
[[ 2.08897856 -0.12795109 1.11496625]
X . ZBT [ 2.98869957 1.13128994 1.88208399 ] The Mean Squared Error (MSE) version:
— — [ 3.93952002 0.08697015 -0.073140089]

[ 5.06280184 1.90969101 1.88113994]] MSE = %zgﬂ Il x, — %, 2= 0.028251

where |-l denotes the Frobenius norm (sum of squared elements).

Original vs Reconstructed (3D) 2D Projection (PCA space)

- P2
® Original 104 @
A PReconstructed ]
P 0.5 -
] P2
2.0 all a ~ P4
-'.-h; 1 E .
1.5 7 =
5 P1
2 0.0 @
1.0 1 =
o
05 1 a3 2
Pz 2 —05-
0.0 ° &
_]_D_
P3
®
I I I I I I I I
=2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
@ Principal Component 1
~

e
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Python code (PCA)

import numpy as np

import matplotlib.pyplot as plt —E 1. Initial data:
from mpl_toolkits.mplot3d import Axes3D # 3D plotting [[2. @. 1.]
N o [3. 1. 2.]

# === 1. Original data (4 points in 3D) === [ﬂ. 8. 0. ]
X = np.array(|

(2.0, 0.0, 1.0], [5. 2. 1.]]

[3.0, 1.0, 2.0],

[4.0, 0.0, 0.0], 2. Centered data:

Beze a0l 1.5 -6.75 0. ]

prin . Initial data: \n", [-0.5 8 75 1.
# === 2. Center the data === [ e.5 -8.75 -1. ]
mean = X.mean(axis=0) [ 1.5 1.25 @. ]]
Xc = X - mean
print("Yn2. Centered data: ‘n", Xc) 3. Covariance matrix:
# === 3. Covariance matrix and eigen decomposition === [[ 1.25 9.625 -0.25 ]
S = (Xc.T @ Xc) / X.shape[@] [ B.625 B.6875 ©.25 ]
print("\n3. Covariance matrix: ‘\n™, S) [-6.25 A.25 B.5 1]
eigvals, eigvecs = np.linalg.eigh(5S) ] ]
idx = np.argsort(eigvals)[::-1] # sort by decreasing eigenvalues Eigenvalues: [1.65924927 @.75 9.02825073]
eigvals — eigvals[idxk] Eigenvectors (columns are PCs):
eigvecs = eigvecs[:, idx] [[—9.34?33?15 -B.26726124 -8.4594556 ]

[-©.52783467 ©.53452248 0.66869673]
[ @.86901072 ©.80178373 -0.59361636]]

print('\nEigenvalues:', eigvals)
print('Eigenvectors (columns are PCs):\n', eigvecs)

o
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Python code (PCA)

‘, F === 4. Explained variance === 4. Explained wvariance per component:
# Step 1: Total variance in the data = sum of all eigenvalues FCI:
total variance = np.sum{eigvals) Eigenvalue (A): 1.6592
# Step 2: Explained variance ratio for each principal component Explained variance: 65.87%
# Each eigenvalue tells how much variance that component captures Cumulative variance: 68.87%
explained wvariance ratio = eigvals / total variance PC2:
# Step 3: Cumulative sum (how much total variance is captured up to each PC) Eigenvalue (A): ©.7508

cumulative variance = np.cumsum(explained variance ratio) Explained variance: 38.77%

Cumulative wvariance: 98.84%
print{"\nd. Explained wvariance per component:") PC3-

# Step 4: Print results clearly

for i in range(len(eigvals)):
print(f" PC{i+l}:")
print(f"  Eigenvalue (A): {eigvals[di]:.4f}")

Eigenvalue (A): @.8283
Explained variance: 1.16%
Cumulative wvariance: 106.88%

print(f" Explained variance: {explained variance ratio[i]*1@8:.2f}%")
print(f"  Cumulative variance: {cumulative variance[i]*180:.2f}%") ] )
5. 2D PCA projection (Z):
# === 5. Project data onto first 2 principal components === [[ 1.66583177 . ]
B = eigvecs[:, :2] # projection matrix [ ©.36877064 1.86904497]
L =Xc @B # low-dimensional representation [-@.89725331 -1.3363@621]
print{"\n5. 2D PCA projection (Z):\n"', Z) [-1.9293491 9.26726124]]
# === 6. Reconstruct data back to 3D === 6. Reconstructed 3D data:
X _reconstructed = Z @ B.T + mean [[ 2.08897856 -08.12795169 1.11496625]
print{"\n6. Reconstructed 3D data:\n", X_reconstructed) [ 2.98869957 1.13128994 1.8820399 ]
[ 3.939528082 ©.08697015 -0.87814069]
# === 7. Reconstruction loss (Mean Sguared Error) === [ 5.66288184 1.98969181 1.88113994]]
reconstruction_loss = np.mean(np.sum{(X - X_reconstructed) ** 2, axis=1))
print(f"\n7. Mean Squared Reconstruction Loss: {reconstruction_loss:.6f}") 7. Mean Squared Reconstruction Loss: 8.828251

o
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Python COde (PCA) - Visualization Original vs Reconstructed (3D)

® Original
A Reconstructed

" # === 8. Visualization ===
fig = plt.figure(figsize=(13, 5))
# --- 3D plot: original and reconstructed points --- 2.0 4 p1’ ‘Fi?zl
axl = fig.add subplot(l, 2, 1, projection="3d") '“Erl
axl.scatter(X[:, @], X[:, 1], X[:, 2], color="blue', s=58, label="Original") 15 1

axl.scatter(X_reconstructed|[:, 8], X_reconstructed[:, 1], X_reconstructed[:, 2],
color="red"', s=58, label="Reconstructed”, marker=""") 1.0
for i, (x, ¥, z) in enumerate(X):
axl.text(x + 8.07, y + 8.87, z + 0.87, f"P{i+1}", color="blue")
for i, (x, y, z) in enumerate(X_ reconstructed):
axl.text(x + .07, y + 8.87, z + 0.87, f"P{i+l}"'", color="red")
# arrows between original and reconstructed

for i in range(len(X)):

axl.plot([X[i, @], X reconstructed[i, @]],
[X[i, 1], X _reconstructed[i, 1]],
[X[i, 2], X reconstructed[i, 2]], color="gray', linestyle='--", alpha=08.7)
axl.set _title("Original vs Reconstructed (3D)")
axl.set xlabel("X.")
axl.set_ylabel("X;") 2D Projection (PCA space)
axl.set_zlabel("X3") P2
axl.legend() 1.0 1 ¢

axl.view init(elev=20, azim=45)

# --- 2D plot: PCA projection ---
ax2 = fig.add subplot(l, 2, 2)
ax2.scatter(Z[:, @], Z[:, 1], color="red", s=58)
for i, (x, y) in enumerate(Z):

ax2.text(x + 0.05, y + @.05, f"P{i+l}")
ax2.set_title("2D Projection (PCA space)")
ax2.set_xlabel("Principal Component 1")

0.5 4

0.0 1

ax2.set_ylabel("Principal Component 2") —0.5 -

Principal Component 2

ax2.axhline(@, color="gray', linestyle='--', linewidth=0.5)
ax2.axvline(®, color="gray', linestyle='--', linewidth=08.5)
plt.tight_layout() —1.01
plt.show()

P3
o

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0
ﬂ) Principal Component 1
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PCA in Scikit-learn (sklearn.decomposition.PCA)

Name / Parameter /

Description

Method

Class sklearn.decomposition.PCA

Performs Principal Component Analysis (PCA) for dimensionality reduction, feature extraction, and data
compression.

Number of principal components to keep. Can be:
e integer — exact number of components

Initialization , , ,
n_components « float € (0,1) — fraction of explained variance
Parameters C : : o
e 'mle’ — choose automatically using Minka’s MLE
e None — keep all components
copy If False, data is overwritten during fitting (saves memory). Default = True.
whiten If True, scales each component to unit variance — useful for some ML algorithms but removes original variance
scale.
tol Tolerance for singular value decomposition when using ‘arpack’.
iterated_power Number of power iterations when using randomized’ solver (improves accuracy).
random_state Ensures reproducibility when using randomized solver.
Attributes o . : .
o components_ Principal axes in feature space (each row is a principal component vector).
(after fitting)

explained_variance_

Eigenvalues — amount of variance explained by each component.

explained_variance_ratio_

Proportion of total variance explained by each component.

mean_

Per-feature empirical mean used for centering.

n_components_

Actual number of components used.

noise_variance_

Estimated noise variance (for MLE mode).

o
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PCA in Scikit-learn (sklearn.decomposition.PCA)

Category Name / Parameter / Method Description

Core Methods  .fit(X) Learns components and explained variance from data ( X ).
.transform(X) Projects data ( X ) into the lower-dimensional PCA space.
fit_transform(X) Combines fitting and transforming in one step.
.inverse_transform(Z) Reconstructs data from the lower-dimensional representation ( Z ).
.get_covariance() Returns the estimated covariance matrix in the original space.
.get_precision() Returns the estimated precision matrix (inverse covariance).
.score(X) Returns the log-likelihood of the data under the model.

Related Utilities sklearn.decomposition.IncrementalPCA Handles large datasets in mini-batches (useful for big data).
sklearn.decomposition.KernelPCA Nonlinear extension of PCA using kernel functions.
sklearn.decomposition.SparsePCA Variant that produces sparse (interpretable) components.

PCAin scikit-learn automatically handles centering and provides easy access to explained variance and
reconstruction — making it ideal for both conceptual learning and applied ML pipelines.

o/
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Python code (PCA - scikit-learn)

# === PCA Example using the Diabetes dataset ===

import numpy as np

import matplotlib.pyplot as plt

from sklearn.datasets import load diabetes

from sklearn.metrics import mean_squared error

from sklearn.decomposition import PCA

from mpl toolkits.mplot3d import Axes3D # for 3D visualization

# === 1. Load dataset ===

X, ¥ = load diabetes{return X y=True)

print("Dataset shape:", X.shape) # (442 samples, 18 features)
print(f"Original dimensionality: {X.shape[1]}")

# === 2. Apply PCA 2D ===

pcaz = PCA{n_components=2)

X _pca2 = pca2.fit_transform(X)

X _reconstructed 2 = pca2.inverse_transform(X_pca2) #Reconstruction (Decoding step)

# === 3. Show metrics 2D ===

print("\nExplained variance per component:", pcal.explained_variance_)
print("Explained variance ratio:", pca2.explained wvariance ratio )

total explained variance 2 = np.sum(pca2.explained variance ratio )

print(f"Total explained variance (2 components): {total explained wvariance 2:.4f}")

mse 2d = mean_squared error(X, X reconstructed 2) Dataset ShapE: EMEJ 16}
print("Reconstruction MSE (2D):", round(mse_2d, 6)) Original dimensionality: 1@
# === 4. Apply PCA 3D ===

Explained variance per component: [@.8@912519 6.863383%4]
pca3d = PCA({n_components=3) , R .
X_pca3 = pca3.fit transform(X) Explained variance ratio: [8.48242188 ©6.14923197]
X_reconstructed 3 = pca3.inverse transform(X_pca3) #Reconstruction (Decoding step) Total explained variance (2 components): 8.5517
Reconstruction MSE (2D): @.88lel4

# === 5. Show metrics 3D ===
print("\nExplained wvariance per component:"”, pca3.explained wvariance )
print("Explained variance ratio:", pca3.explained variance_ ratio )

Explained variance per component: [8.88912519 6.863383%4 0.88273462]

total explained variance 3 = np.sum(pcal.explained variance ratio ) Explained variance ratio: [6.48242188 @.14923197 ©.12659663 ]
print(f"Total explained variance (3 components): {total explained wvariance 3:.4f}") Total explained variance |:3 CﬂmpﬂﬂEﬂtE:]: 8.Ga722
mse 3d = mean_squared error(X, X _reconstructed 3) Reconstruction MSE {E‘:D:I - 8.8868742

w print("Reconstruction MSE (3D):", round(mse 3d, 6))
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Python code (PCA - scikit-learn)

0.15 -

# === b. 2D Visualization ===
plt.figure(figsize=(12, 5))

# --- 2D projection ——4
plt.subplot(l, 2, 1)

plt.scatter(X_pca2[:, @], X pca2[:, 1], c=y, cmap="coolwarm', s=48, edgecolor="k')

plt.xlabel{ 'Principal Component 1")

plt.ylabel( 'Principal Component 2")

plt.title('2D PCA Projection’)
plt.colorbar(label="Target (disease progression)')

# === 7. 3D Visualization ===

ax = plt.subplot(l, 2, 2, projection="3d")

p = ax.scatter(X pca3[:, @], X pca3[:, 1], X pca3[:, 2],
c=y, cmap="coolwarm', s=40, edgecolor="k')

ax.set xlabel('PC1")

ax.set_ylabel('PC2")

ax.set_zlabel( 'PC3")

ax.set_title( 3D PCA Projection’)

plt.colorbar(p, ax=ax, label='Target')

ax.view init(elev=20, azim=45)

plt.tight layout()

plt.show()

o
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Let’s proceed to the practical exercises

link:

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"



https://colab.research.google.com/drive/18UU3EWyRnLZqeoH34G9hdPjFbJFQaRH_?usp=sharing
https://colab.research.google.com/drive/18UU3EWyRnLZqeoH34G9hdPjFbJFQaRH_?usp=sharing
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