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1. Why Dimensionality Reduction?
In modern machine learning, we often deal with high-dimensional data:

• A grayscale image of size 100×100 has 10,000 features (pixels).

• A document represented by word frequencies (bag-of-words) may have tens of 

thousands of features.

• Genomic datasets can have millions of measurements per sample.

Challenges:

1. Curse of Dimensionality

• As dimensionality increases, the volume of the feature space grows 

exponentially.

• Data points become sparse, making it difficult for models to generalize.

• Distance-based methods (like k-NN) lose effectiveness since all points 

appear equally distant.

2. Computational Cost

• Training models on thousands of features requires significant memory and 

processing time.

• Algorithms such as linear regression, clustering, or SVM become slow or 

unstable.

3. Visualization

• Humans cannot easily interpret data in more than 3 dimensions.

• PCA allows projecting high-dimensional data into 2D or 3D, making it 

possible to visualize clusters, separability, and patterns.

The original dataset does not vary much

along the x2 direction. This data can be

represented using the x1-coordinate alone 

with nearly no loss
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Example: dataset of handwritten digits (MNIST)
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Each digit image has 784 features (28×28 pixels).

• Training a classifier directly on 784 dimensions is expensive.

• PCA can reduce it to, say, 50 dimensions while preserving ~95% of the variance.

• This results in faster training, less noise, and still accurate recognition.

Example: using the Diabetes dataset from sklearn

• Diabetes dataset has many correlated features – linear regression may 

become unstable due to multicollinearity. 

• Using PCA, we can reduce the data to a few uncorrelated principal 

components, making the regression more stable and sometimes 

improving generalization.
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Problem Setting
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We have a dataset of 𝑁 samples:

where each vector has high dimensionality (𝐷 features).

• For simplicity, assume the data is centered (mean = 0).

• The covariance matrix describes how features vary together:

Goal of PCA:

• Project data into a lower-dimensional space (𝑀<𝐷)

• Preserve as much of the original variability as possible

• Ensure projected points are “close” to the originals (minimal 

reconstruction error).

Intuition: Imagine compressing a high-resolution image into 

fewer pixels, while still keeping it recognizable
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Compression Idea

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

We search for a set of projection directions:

where the columns 𝑏𝑖 are orthonormal vectors (mutually perpendicular, unit length).

Encoding step (compression):

Each original point 𝑥𝑛 is represented by an M-dimensional code 𝑧𝑛.

Decoding step (reconstruction):

here ෤xn is the approximation of the original point in the lower-dimensional subspace spanned by 𝑏1,…,𝑏𝑀.

Objective: 

Find the matrix 𝐵 such that:

• The variance of the projected data is maximized, 

        OR

• The reconstruction error xn  −  ෤xn
2 is minimized.

Intuition:

• 𝑧𝑛 = compressed “code” (like storing fewer 

coordinates).

• 𝐵 = dictionary/basis that defines the new subspace.

• PCA guarantees that this compression loses as little 

information as possible for the chosen dimension 𝑀
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Linear Algebra Foundations of PCA
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Principal Component Analysis (PCA) is fundamentally a linear algebra method. To understand it deeply, we need to recall 

several key concepts.

Vectors, Inner Product, and Orthogonality

• A vector represents a data point in a 𝐷-dimensional space:

𝑥 = 𝑥1 𝑥2 … 𝑥𝐷]⊤ ∈ ℝ𝐷

• The inner product (dot product) measures similarity between two vectors:

𝑥 𝑦 = 𝑥⊤𝑦 = ෍

𝑖=1

𝐷

𝑥𝑖 𝑦𝑖

• The norm (length) of a vector:

∥ 𝑥 ∥= 𝑥⊤𝑥

• Two vectors are orthogonal if:

𝑥 𝑦 = 0

• Orthogonality means they point in independent directions — no shared information.

In PCA, we will find a new orthogonal coordinate system (basis) where data variance is maximized.
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Variance and Covariance of Data
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Variance of a variable 𝑥 measures how much data spreads along one 

axis:

Covariance between two variables 𝑥 and 𝑦 measures how much two 

variables vary together:

If positive → both increase/decrease together.

If negative → one increases, the other decreases.

If zero → they are linearly uncorrelated. 

Covariance Matrix (The covariance matrix captures how features vary individually and jointly)
For multivariate data 𝑋 ∈ ℝ𝑁×𝐷 (rows = samples, columns = features):

𝑆 =
1

𝑁
𝑋⊤𝑋

Each element 𝑠𝑖𝑗 of 𝑆 represents the covariance between features 𝑖 and 𝑗:

we can use either of two conventions:

𝑆 =
1

𝑛
𝑋𝑐

𝑇𝑋𝑐 (ML convention) - Used in PCA, SVD, and many ML libraries. Here we treat 𝑋𝑐 as the whole dataset, not a sample

𝑆 =
1

𝑛−1
𝑋𝑐

𝑇𝑋𝑐 (statistical convention) - Used in statistics when the dataset is considered a sample from a larger population. Dividing by 𝑛−1 gives an 

unbiased estimator
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Eigenvalues and Eigenvectors
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If we perform eigen-decomposition of the covariance matrix:

𝑆𝑏𝑖 = 𝜆𝑖𝑏𝑖

then:

•𝑏𝑖 —eigenvectors (principal directions / axes of maximal variance)

•𝜆𝑖 —eigenvalues (amount of variance explained by each axis)

The eigenvectors form an orthonormal basis, meaning:

We can then sort eigenvalues:  𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝐷

The explained variance ratio (for component 𝑖) is:

This gives the fraction (or percentage) of total variance explained by the 𝑖-th principal component

Select the first 𝑀 eigenvectors to form:

𝐵 = 𝑏1 𝑏2 … 𝑏𝑀

This matrix 𝐵 defines the projection into a lower-dimensional subspace:

𝑍 = 𝐵⊤𝑋

Key Insight 

1. PCA = finding orthogonal directions 

(basis vectors) that capture 

maximum variance in data.

2. These directions are eigenvectors 

of the covariance matrix.

3. The corresponding eigenvalues tell 

us how important each direction is 

(Each eigenvalue tells how much 

variance that component captures)

4. Total variance in the data = sum of 

all eigenvalues
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Decoding (Reconstruction to original space)
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The decoded (reconstructed) approximation of the original data is:

෨𝑋 = 𝑍𝐵⊤ = 𝑋𝑐𝐵𝐵⊤.

Reconstruction error (per sample)

The reconstruction error vector for the 𝑖-th observation is:

𝑒𝑖 = 𝑥𝑐,𝑖 − ෤𝑥𝑖 = 𝑥𝑐,𝑖 − 𝐵𝐵⊤𝑥𝑐,𝑖 .

The squared reconstruction error (per sample) is:

𝐸𝑖 =∥ 𝑒𝑖 ∥2=∥ 𝑥𝑐,𝑖 − 𝐵𝐵⊤𝑥𝑐,𝑖 ∥2.

This measures how far the reconstructed point lies from the original point in 

the feature space.

Total reconstruction error (Frobenius norm form)

Over all 𝑁 samples, the total squared reconstruction error is:

𝐸total =∥ 𝑋𝑐 − ෨𝑋 ∥𝐹
2 =∥ 𝑋𝑐 − 𝑋𝑐𝐵𝐵⊤ ∥𝐹

2 .

Key Insight 

Decoding (or Reconstruction) in PCA is the process of 

projecting data back from the low-dimensional 

principal component space into the original feature 

space.

Each reconstructed point lies in the subspace spanned 

by the top 𝑀 eigenvectors — it’s the closest possible 

linear approximation (in the least-squares sense) of 

the original point using only those 𝑀 directions of 

maximal variance.

Intuitive Summary

• PCA “compresses” data by keeping only the directions 

that matter most.

• Decoding “unpacks” that compressed representation — 

not perfectly, but with minimal possible error among 

all rank-𝑀 linear reconstructions.

• The reconstruction shows how much information was 

preserved by the chosen components.
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PCA Example (2D projection and reconstruction)
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Data

We have 𝑁 = 4 points in ℝ3 (rows are samples): 𝑋 =

2 0 1
3 1 2
4 0 0
5 2 1

1) Mean vector and centering. Mean (feature-wise):

Center the data: 𝑥𝑛
𝑐

= 𝑥𝑛 − 𝑥
ˉ
. The centered data matrix 𝑋𝑐 (each row a centered sample):

𝑋𝑐 =

−1.5 −0.75 0.0
−0.5 0.25 1.0
0.5 −0.75 −1.0
1.5 1.25 0.0

.
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Outer-products and covariance matrix
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Compute outer product 𝑥𝑛
𝑐

𝑥𝑛
𝑐 ⊤

for each sample, then sum and divide by 𝑁.

Outer-products for each centered sample:

Sample 1 𝑥 𝑐 = − 1.5 , − 0.75 , 0 :

𝑥 𝑐 𝑥 𝑐 ⊤
=

2.25 1.125 −0.0
1.125 0.5625 −0.0
−0.0 −0.0 0

Sample 2 𝑥 𝑐 = − 0.5 0.25 , 1.0 :
0.25 −0.125 −0.5

−0.125 0.0625 0.25
−0.5 0.25 1.0

Sample 3 𝑥 𝑐 = 0.5 −0.75, − 1.0 :
0.25 −0.375 −0.5

−0.375 0.5625 0.75
−0.5 0.75 1.0

Sample 4 𝑥 𝑐 = 1.5 1.25 , 0 :
2.25 1.875 0

1.875 1.5625 0
0 0 0

Sum of outer-products:

𝑆sum =
5.0 2.5 −1.0
2.5 2.75 1.0

−1.0 1.0 2.0
.

Covariance matrix (using 1/𝑁 normalization):

𝑆 =
1

4
𝑆sum =

1.25 0.625 −0.25
0.625 0.6875 0.25
−0.25 0.25 0.5

.
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Eigen-decomposition of 𝑆
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Solve

 𝑆𝑏𝑖 = 𝜆𝑖𝑏𝑖

Eigenvalues (sorted descending) and corresponding eigenvectors (columns):

𝜆1 ≈ 1.6592492719, 𝜆2 = 0.75, 𝜆3 ≈ 0.0282507281.

Eigenvectors (columns correspond to 𝜆1, 𝜆2, 𝜆3)

𝑉 =
−0.847037 −0.267261 −0.459456
−0.527035 0.534522 0.660697
0.069011 0.801784 −0.593616

.

Select top 𝑀 components and build 𝐵.

Choose 𝑀 = 2. The projection matrix 𝐵 (columns are top-2 eigenvectors):

𝐵 = 𝑏1 𝑏2 =
−0.847037 −0.267261
−0.527035 0.534522
0.069011 0.801784

∈ ℝ3×2.

Key Insight 

1. PCA = finding orthogonal directions 

(basis vectors) that capture maximum 

variance in data.

2. These directions are eigenvectors of 

the covariance matrix.

3. The corresponding eigenvalues tell 

us how important each direction is 

(Each eigenvalue tells how much 

variance that component captures)

4. Total variance in the data = sum of all 

eigenvalues
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Encoding (projecting) 
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Encoding (projecting) — compute 𝑍 = 𝑋𝑐𝐵

Projected coordinates 𝑍 (each row is the 2D code 𝑧𝑛)

Z =
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Decoding (reconstruction)
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෨𝑋 = 𝑍𝐵⊤ = 

Decoding (reconstruction) — compute 

When we compress data to a lower-dimensional space and then decode it back,

some information is inevitably lost.

This loss is quantified by the reconstruction error — how far the reconstructed 

data ෨𝑋 is from the original centered data 𝑋𝑐. 

The Mean Squared Error (MSE) version:

MSE =
1

𝑁
σ𝑛=1

𝑁 ∥ 𝑥𝑛 − ෤𝑥𝑛 ∥2= 0.028251

where ∥⋅∥𝐹 denotes the Frobenius norm (sum of squared elements).
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Python code (PCA)
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Python code (PCA)
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Python code (PCA) - Visualization
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PCA in Scikit-learn (sklearn.decomposition.PCA)
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Category
Name / Parameter / 

Method
Description

Class sklearn.decomposition.PCA
Performs Principal Component Analysis (PCA) for dimensionality reduction, feature extraction, and data 

compression.

Initialization 

Parameters
n_components

Number of principal components to keep. Can be: 

• integer → exact number of components 

• float ∈ (0,1) → fraction of explained variance 

• 'mle' → choose automatically using Minka’s MLE 

• None → keep all components

copy If False, data is overwritten during fitting (saves memory). Default = True.

whiten
If True, scales each component to unit variance — useful for some ML algorithms but removes original variance 

scale.

tol Tolerance for singular value decomposition when using 'arpack'.

iterated_power Number of power iterations when using 'randomized' solver (improves accuracy).

random_state Ensures reproducibility when using randomized solver.

Attributes 

(after fitting)
components_ Principal axes in feature space (each row is a principal component vector).

explained_variance_ Eigenvalues — amount of variance explained by each component.

explained_variance_ratio_ Proportion of total variance explained by each component.

mean_ Per-feature empirical mean used for centering.

n_components_ Actual number of components used.

noise_variance_ Estimated noise variance (for MLE mode).
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PCA in Scikit-learn (sklearn.decomposition.PCA)
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Category Name / Parameter / Method Description

Core Methods .fit(X) Learns components and explained variance from data ( X ).

.transform(X) Projects data ( X ) into the lower-dimensional PCA space.

.fit_transform(X) Combines fitting and transforming in one step.

.inverse_transform(Z) Reconstructs data from the lower-dimensional representation ( Z ).

.get_covariance() Returns the estimated covariance matrix in the original space.

.get_precision() Returns the estimated precision matrix (inverse covariance).

.score(X) Returns the log-likelihood of the data under the model.

Related Utilities sklearn.decomposition.IncrementalPCA Handles large datasets in mini-batches (useful for big data).

sklearn.decomposition.KernelPCA Nonlinear extension of PCA using kernel functions.

sklearn.decomposition.SparsePCA Variant that produces sparse (interpretable) components.

PCA in scikit-learn automatically handles centering and provides easy access to explained variance and 

reconstruction — making it ideal for both conceptual learning and applied ML pipelines.
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Python code (PCA - scikit-learn)
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Python code (PCA - scikit-learn)
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Let’s proceed to the practical exercises

link:
https://colab.research.google.com/drive/18UU3EWy

RnLZqeoH34G9hdPjFbJFQaRH_?usp=sharing
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https://colab.research.google.com/drive/18UU3EWyRnLZqeoH34G9hdPjFbJFQaRH_?usp=sharing
https://colab.research.google.com/drive/18UU3EWyRnLZqeoH34G9hdPjFbJFQaRH_?usp=sharing
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