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1. Limitations of Classical Machine Learning Models

Linear Regression Model equation:

TL
Y = wy E W;T;
i1

Optimization objective:
1 T _ .
: _ ~(J) (4)y2
min J(w) = 5— jE_lﬁ(y y)

Limitation: only captures linear

relationships between features and target.

Linear Regression with Scatter Plot
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Logistic Regression Model equation:

1

Py =1|z) = J(wT:{: Fb) =

Decision boundary: linear
space.
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in feature

Limitation: can’t handle XOR-like
(non-linearly separable) data.
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No linear separator exists!

Support Vector Machines (SVMs).

Linear SVM objective:

1
min - [|w|]* s.t.

u,b

yi(wha; +b) > 1

Kernel trick can help, but requires
manual choice of transformation

Limitation: can’t automatically discover

hierarchical features — unlike deep
networks.

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"



Biological Inspiration vs. Mathematical Abstraction
Key idea:

Instead of desighing explicit features and transformations, let the model learn internal representations from data —
inspired by how biological neurons process information.

Neurons are basic units of the brain and nervous system.

Receive input sighals via dendrites, process them, and produce an output through the axon.

A neuron “fires” if total stimulation exceeds a certain threshold.

Synaptic connections have different strengths — represent weights in the artificial model.

input

dendrites (dendrites)
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Mathematical abstraction of a neuron

. Artificial neuron = simplified computational model. In the artificial neuron, we replace biological signals with
numerical values. Each connection has a weight that measures how
* Each input X; has an associated weight w;. strong that signal is. The neuron calculates a weighted sum of its

inputs and adds a bias term. Then we pass the result through an
L

The neuron computes: 2z = E w;x; + b
i=1

activation function to decide the neuron’s output. This equation

y=f (O wx+b) - 1s the mathematical heart of every neural network.
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Output determined by activation function: y=f(z)

»
fi \
Computational abstraction: y = f Zw-ﬁft Fb|,

i=1

where f is an activation function (Step, sigmoid, RelLU, etc).
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summation non-linearity
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Activation functions - making neurons nonlinear

Function Formula Description
Step  f(z)=1if z20; 0 otherwise Binary decision, perceptron model
Sigmoid f(z) = 1+IE z Smooth transition, probabilistic output
RelLU f(z)=max(0,z) Efficient, dominant in deep learning

Activation functions introduce nonlinearity.

Without them, the entire network would be equivalent to one big linear transformation -

useless for complex tasks.

The step function mimics early biological firing, the sigmoid gives smooth probabilistic
outputs, and ReLU became standard for deep architectures because of computational

efficiency and gradient stability.

o

Common Activation Functions
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From biology to computation

Biological neuron — conceptual inspiration. We don’t simulate biological details - we abstract them.
Artificial neuron — mathematical and computational abstraction. Yet the key principle remains: signals are combined, weighted,
Core idea remains: and passed through a nonlinear rule.

Stacking many such neurons gives rise to multilayer

* Weighted inputs
architectures capable of approximating almost any function.

« Summation
« Nonlinear activation

Forms the building block of all neural networks.

Every neural network — from a simple perceptron to a transformer — is built on the same equation:

Yy = f Z W; T { b
i=1

The rest is architecture, scale, and training

o
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The Perceptron Model
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Introduced by Frank Rosenblatt (1958).

The first trainable artificial neuron.

Perceptron Decision Boundary for Two Classes

Goal: find a linear decision boundary separating two classes.

Inspired by biological neurons, but trained via data.
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« Two Gaussian clusters represent two classes (blue and red).

« The perceptron adjusts weights until it finds a line that separates the
classes.

« The dashed black line is the decision boundary: w,x+w,x,+b=0


https://en.wikipedia.org/wiki/Frank_Rosenblatt

Perceptron mathematical model
For an input vector x = [xy' xy ... x,,]: " )
Z=wWyx; +Woxy, + -+ wpx, +b=wlx +b " 1:5: . $ x 1:5: iR =" Decision boundary
OUtpUt: 1 » 0 0:5\ I .‘.‘.'.:0 . 0:5: 1 .‘.‘.'.:. )
Y= f(z) — {U} 7 < 0 %00 \;Ts 10 15 2;:) 25 30 35 40 ®%00 o5 10 15 20 25 30 35 40
Training rule (Rosenblatt learning): Learning intuition:
Given training examples (x(,y(®) | update after each sample:
wew+nly —9y)x, b—b+n(ly—9y) If y =1, 9§ = 0: increase weights for active features.

where: If y =0, § = 1: decrease weights.

* 7n - learning rate (0.0-1.0);

* y - true label; Repeats for all samples — line moves until all points

« § - predicted output are correctly classified

I if data is linearly separable
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Perceptron algorithm

Pseudocode:

initializew, b =0
for epoch in range(max_epochs):
for each (x, y) in training_data:
Z=W-X+D
y_ hat=1ifz>=0else 0
w=w+n*(y-y_hat) *x
b=b+n*(y-y_hat)

This simple loop implements the
perceptron learning rule.

Note that it updates weights after
each sample — this is an early
form of stochastic gradient
descent.
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Python example:

import numpy as np
import matplotlib.pyplot as plt

# Linearly separable dataset
X = np.array([[0,0],[0,1],[1,0],[01,1]11])

I P u

y = np.array([0, 0, 0, 1]) # AND logic
# Parameters
W = np.zeros(Z)

b =10
eta = 0.1

for epoch in range (10) :
for xi, target in zip(X, v):
z = np.dot(w, xi) + b
vy hat = 1 if z >= 0 else O
w += eta * (target - y hat) * xi
b += eta * (target - y hat)
print ("Weights:", w, "Bias:", b)

Weights: [0.2 0.1] Bias: -—-0.20000000000000004

xl = np.linspace(-0.2, 1.2, 50)
®¥2 = —(w[0]*x1l + b)/wll]
plt.scatter(X[:,0], X[:,1], c=v, cmap='bwr')

plt.plot(xl, =2, 'k—")
plt.title ("Perceptron Decision Boundary (AND gate) ™)

plt.show()
Perceptron Decision Boundary (AND gate)
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This shows that the AND function is linearly separable — it can be perfectly divided
by a straight line, so the perceptron can learn it
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Limitations of the perceptron

Works only if data are linearly separable.

Fails on the XOR problem: No single line can separate (0,1) and (1,0) from (0,0) and (1,1).

Output is discrete — non-differentiable — can’t use gradient methods directly.

Leads to development of multi-layer perceptrons (MLP) and backpropagation.

Key takeaway

The perceptron is simple yet foundational.

It introduced:

* The concept of learnable weights.

 Iterative error correction.

* The idea of neurons as basic computational units.

But it also revealed the need for nonlinearity and depth — leading to modern neural networks

o
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Multilayer Neural Networks. Feedforward Architecture

Feedforward Neural Network: 2-3-1 Architecture

Input layer — Hidden layer(s) — Output layer O

® QD »
O

Each neuron computes: a; = f (Z wjiz; | bj)

Each layer takes the output of the previous one, applies

a linear transformation (weights and biases), and then a Each circle represents a neuron.

nonlinear activation function f(z). Gray lines show the flow of information (weights) from
one layer to the next.

“Feedforward” means information moves strictly in one The layout [2, 3, 1] corresponds to:

direction — no feedback loops. * Input layer: 2 neurons (x4, x,)
« Hidden layer: 3 neurons

 Output layer: 1 neuron (y,)

o
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Activation Functions

Common Activation Functions

Function Formula Description 1 = 213[3“"“
Tanh f(z)=tanh(z) Zero-centered 3
Sigmoid f(z) = 1+1-e—r Smooth transition, probabilistic output
0 __'/
ReLU f(z)=max(0,z) Efficient, dominant in deep learning )

Nonlinearity is key!

Without a nonlinear activation, multiple layers would collapse into a single linear transformation.

o
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Differentiability and Gradient Descent

To train a network, we minimize a loss function — typically Mean Squared Error or Cross-Entropy.

1. Mean Squared Error (MSE) 2. Cross-Entropy Loss
Used mainly for regression problems (continuous outputs). Used for classification problems.

. (a) Binary class1f1catlon

ﬁ]‘l.-‘ISE — % Z(yx I:"i)g Lcg = N,Z; [’y{ log(y;) + (1 — i) log(1 — ;)

t=1 (b) Multi-class classification:
Where: | N K
y; — true target value Lop =~ D yinlog(Ga)
y; — predicted output of the network Where: e
N — number of training examples vir = 1, if sample i belongs to class k, otherwise 0

9« - predicted probability that sample i belongs to class k
The MSE measures the average squared difference between predictions and g - number of classes
true values.

Mlmmlzmg it mak.es the qetwork > outpqts get closer. to actual targgt;. , Cross-entropy penalizes confident but wrong predictions. It measures how
It’s smooth and differentiable — convenient for gradient-based optimization. . . e~
well the predicted probability distribution ¥y  matches the true

distribution y. It’s derived from information theory — minimizing it
corresponds to maximizing likelihood

. . . . . ) ) ) e old oL
We adjust each weight in the direction that reduces the loss, using its gradient: w.E; ) — -w,E;,. ] 7

mj : 51.;1”
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Differentiability and Gradient Descent

Gradient Descent on 2D Loss Surface

% — —— Gradient Descent Path This plot shows a simple quadratic loss surface.

/ — (O Global Minimum y

l / NN Each contour line represents equal loss values — like elevation
/ on a map.

The red path shows how the algorithm gradually updates the
parameters (w;’w,) in the direction of the negative gradient,
step by step, moving toward the global minimum.

The yellow dot is the minimum of the loss function.

We adjust each weight in the direction that reduces the loss, using its gradient.

mj That’s the principle of gradient descent.
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Backpropagation

Backpropagation is not part of the network architecture.

It’s an algorithm used to train the feedforward network — to adjust weights and biases so that the network minimizes a loss
function.
Backpropagation efficiently applies the chain rule of calculus to compute the gradient of the loss L with respect to every

weight in the network:

B oL =0 xi wh 5-—8—L-f’(z-) is th term f -
Ow;; Oa; 0z Owj; Ow — Uj&i where ¢ da, j) - is the error term for neuron j.

zj = z w;; x; + b; is the weighted sum before activation.
i

Step-by-step Interpretation:

% — how sensitive the loss is to the output of neuron j (this comes from the next layer - it’s back-propagated);
J

da; N : e

aizl{ = f'(2;) — how the activation function changes with its input.
J

0z; : s .

a;]-- = x; — because z; depends linearly on its input weights.
ji

o
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Propagating the Error Backward (Summary)

Each neuron produces output a; = f (2 Wi X; + bj).
i

During learning, backpropagation finds how each w;; affects the total loss.

Using the chain rule, we compute

oL
ﬁwji

= 5]xl

and update weights to reduce the loss.

Errors (6;) move backward through the network — hence the name backpropagation.

o
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Practical Example - XOR Classification

We can now solve the XOR problem using a small Multilayer Perceptron (MLP).

import numpy as np
from sklearn.neural network import MLPClassifier
import matplotlib.pyplot as plt

$ XOR dataset
X = np.array([[0,0], [0O,1], [1,01, [1,111)
Yy = np.array([0, 1, 1, 01)

¥ Train MLP with one hidden layer of 2 neurons
model = MLPClassifier (hidden layer sizes=(2,), activation='tanh',

solver='sgd', learning rate init=0.1, max iter=100000)
model.fit (X, vy)
$ Predictions
print ("Predictions:", model.predict (X))

$¥ Plot decision regions

XX, ¥y = np.meshgrid(np.linspace(-0.5, 1.5, 200},
np.linspace(-0.5, 1.5, 200))

7 = model.predict{np.c_:xx.ravel{j, yy.ravel()]) .reshape (xx.shape)

plt.contourf(xx, vy, Z, alpha=0.3)

plt.scatter(X[:,0], ¥X[:,1], c=vy, edgecolor="k', s5=100)

plt.title ("XCOR solved by a 2-2-1 MLE")

plt.show()

The MLP correctly learns the XOR function. The plot shows a nonlinear decision boundary dividing the (0,0)/(1,1) vs (0,1)/(1,0) regions.

o

Predictions: [@ 1 1 0]

XOR solved by a 2-2-1 MLP
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Key Takeaways

* Hidden layers allow nonlinear feature transformations.
 Activation functions provide nonlinearity and gradient flow.
» Backpropagation + gradient descent = core of deep learning.

* Even a small MLP can solve problems unsolvable by a single perceptron.

o
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Scikit-learn Neural Network Classes Overview

Perceptron (sklearn.linear_model.Perceptron) MLPClassifier / MLPRegressor (sklearn.neural_network)
PUrbose Implements the classic single-layer perceptron (linear Implements a Multi-Layer Perceptron trained by backpropagation. Supports multiple
P classifier). Suitable for linearly separable data. hidden layers, nonlinear activation, and various solvers.
Type Linear binary/multiclass classifier Nonlinear classifier (MLPClassifier) or regressor (MLPRegressor)

Stochastic Gradient Descent (SGD) using the perceptron

learning rule Backpropagation with different optimizers: 'adam’, 'sgd’, or 'lbfgs

Training algorithm

Loss function Hinge-like loss (similar to linear SVM) For classifier: log-loss (cross-entropy); for regressor: squared loss
Activation Sign function (implicitly) identity’, 'logistic’, 'tanh’, relu’

Hidden layers None — only direct connection from inputs to outputs Configurable: e.g. hidden_layer_sizes=(100,) (1 hidden layer, 100 neurons)
Regularization alpha — L2 penalty on weights alpha — L2 regularization term (default 0.0001)

etal (initial learning rate); learning_rate can be ‘constant’,

ey . > learning_rate_init (default 0.001) and schedule: ‘constant’, ‘invscaling’, ‘adaptive’
optimal’, or ‘invscaling

Learning rate

Solver 'sgd’ (default) ‘adam’ (default), 'sgd’, or ‘lbfgs'

Epochs / Iterations TO%)B—)]ter — humber of passes over training data (default max_iter — maximum iterations (default 200)

Batch size Not applicable (uses online or mini-batch SGD implicitly) batch_size — number of samples per gradient update (default ‘auto’)
Early stopping No early_stopping=True stops training if validation score does not improve
Shuffle shuffle=True shuffles samples each epoch shuffle=True also available

Optional: momentum and nesterovs_momentum (if

Momentum o Also supported when using solver='sgd’
solver="sgd’)
Learning rate control learning_rate, eta0 learning_rate, learning_rate_init
Output layer activation Implicit sign function Determined by task:e 'softmax’ (for classification)e Linear (for regression)
fit(X, y) — trainpredict(X) — labelsscore(X, y) — fit(X, y) — trainpredict(X) — predictpredict_proba(X) — class probabilitiesscore(X, y)
Methods e : A : .
accuracypartial_fit(X, y) — online update — accuracy/R?partial_fit(X, y) — incremental learning
Attributes after fitting coef_ — weight matrixintercept_ — bias vectorclasses_ — coefs_ — list of weight mgtrlges per layerintercepts_ — list of bias vectorsn_iter_,
class labels loss_, n_layers_, out_activation_
Initialization Random weights Xavier-like initialization internally

Scaling input data Strongly recommended (use StandardScaler) Essential for convergence and stable learning




Parameter descriptions (summar

Parameter

hidden_layer_sizes

Description

Tuple specifying number of neurons in each hidden layer.

Common values / notes

(100,) = 1 hidden layer, 100 neurons; (50, 30, 10) = 3 layers

activation Activation function for hidden layers. identity’, ‘logistic’, tanh’, relu’
solver Optimization algorithm for weight updates. ‘'adam’ (adaptive), 'sgd’, 'Ibfgs’ (quasi-Newton)
alpha L2 regularization parameter. Smaller — less regularization.

learning_rate_init / eta0

Initial learning rate.

e.g., 0.01 or 0.001

max_iter Maximum number of training iterations (epochs). Increase if model doesn’t converge.
tol Tolerance for stopping criteria (min improvement). Default 1e-4

batch_size Number of samples per gradient update (for MLP only).  ‘auto’ or integer

shuffle Shuffle samples each epoch. Default True

momentum Momentum factor for gradient updates (if sgd). Typical 0.9

early_stopping

Stop training when validation score stops improving.

Default False

validation_fraction

Fraction of training data used for validation when
early_stopping=True.

Default 0.1

random_state

Seed for reproducibility.

Integer or None

verbose

Prints progress messages.

Default False

o
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Example (Comparing Perceptron and MLP on Nonlinear Data) Perceptron

import matplotlib.pyplot as plt

from sklearn.datasets import make moons

from sklearn.linear model import Perceptron

from sklearn.neural network import MLPClassifier

from sklearn.preprocessing import StandardScaler

from sklearn.inspection import DecisionBoundaryDisplay

# Data

X, v = make moons(n_samples=300, noise=0.2, random state=42)
scaler = StandardScaler ()

X scaled = scaler.fit_transformix}

$# Models
n = Perceptron{max_iter=lDDD, random state=0)
p.fit (X scaled, y)

mlp = MLPClassifier (hidden layer sizes=(50,), activation='relu', solver='adam',6K max iter=5000, randcm state=0)
mlp.fit (X scaled, y)

# Visualization

fig, axes = plt.subplots(l, 2, figsize= (10, 4))

for model, title, ax in zip([p, mlp]l, ['Perceptron', 'MLEClassifier'], axes):
DecisionBoundaryDisplay.from estimator (model, X scaled, response method='predict', ax=ax, cmap='coolwarm', alpha=0.8&)
ax.scatter (X scaled[:, 0], X scaled[:, 1], c=y, edgecclor="k', cmap='coolwarm')
ax.set title(title)

plt.tight layout ()

plt.show()

In this example, we generate a nonlinearly separable dataset using make_moons() and compare the performance
of a single-layer Perceptron with a Multilayer Perceptron (MLP).

By introducing hidden layers and nonlinear activations, MLPs can model complex, nonlinearly
separable relationships that simple Perceptrons cannot.
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Let’s proceed to the practical exercises
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https://colab.research.google.com/drive/1UfWHQZKqWHOiA2No9-AdP3MZDYTqDiii?usp=sharing
https://colab.research.google.com/drive/1UfWHQZKqWHOiA2No9-AdP3MZDYTqDiii?usp=sharing
https://colab.research.google.com/drive/1UfWHQZKqWHOiA2No9-AdP3MZDYTqDiii?usp=sharing
https://colab.research.google.com/drive/1UfWHQZKqWHOiA2No9-AdP3MZDYTqDiii?usp=sharing
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