
Introduction to Neural Networks 

Lecture by prof. Dmytro Babets

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"



vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

1. Limitations of Classical Machine Learning Models

Linear Regression Model equation:

Optimization objective:

Limitation: only captures linear 

relationships between features and target.

Logistic Regression Model equation:

Decision boundary: linear in feature 

space.

Limitation: can’t handle XOR-like 

(non-linearly separable) data.

No linear separator exists!
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0 0 0

0 1 1

1 0 1
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Support Vector Machines (SVMs).

Linear SVM objective:

Kernel trick can help, but requires 

manual choice of transformation

Limitation: can’t automatically discover 

hierarchical features — unlike deep 

networks.
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Biological Inspiration vs. Mathematical Abstraction

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Key idea:

Instead of designing explicit features and transformations, let the model learn internal representations from data — 

inspired by how biological neurons process information.

• Neurons are basic units of the brain and nervous system.

• Receive input signals via dendrites, process them, and produce an output through the axon.

• A neuron “fires” if total stimulation exceeds a certain threshold.

• Synaptic connections have different strengths → represent weights in the artificial model.
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Mathematical abstraction of a neuron

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Computational abstraction:                                           ,

where 𝑓 is an activation function (Step, sigmoid, ReLU, etc).

• Artificial neuron = simplified computational model.

• Each input 𝑥𝑖 has an associated weight 𝑤𝑖.

• The neuron computes:

• Output determined by activation function: y=f(z)

In the artificial neuron, we replace biological signals with 

numerical values. Each connection has a weight that measures how 

strong that signal is. The neuron calculates a weighted sum of its 

inputs and adds a bias term. Then we pass the result through an 

activation function to decide the neuron’s output. This equation 

𝑦=𝑓(∑𝑤𝑖𝑥𝑖+𝑏) - is the mathematical heart of every neural network.
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Activation functions – making neurons nonlinear

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Function Formula Description

Step f(z)=1 if z≥0; 0 otherwise Binary decision, perceptron model

Sigmoid Smooth transition, probabilistic output

ReLU f(z)=max(0,z) Efficient, dominant in deep learning

Activation functions introduce nonlinearity.

Without them, the entire network would be equivalent to one big linear transformation - 

useless for complex tasks.

The step function mimics early biological firing, the sigmoid gives smooth probabilistic 

outputs, and ReLU became standard for deep architectures because of computational 

efficiency and gradient stability.
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From biology to computation

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Biological neuron → conceptual inspiration.

Artificial neuron → mathematical and computational abstraction.

Core idea remains:

• Weighted inputs

• Summation

• Nonlinear activation

Forms the building block of all neural networks.

We don’t simulate biological details - we abstract them.

Yet the key principle remains: signals are combined, weighted, 

and passed through a nonlinear rule.

Stacking many such neurons gives rise to multilayer 

architectures capable of approximating almost any function.

Every neural network — from a simple perceptron to a transformer — is built on the same equation:

The rest is architecture, scale, and training
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The Perceptron Model

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

• Introduced by Frank Rosenblatt (1958).

• The first trainable artificial neuron.

• Goal: find a linear decision boundary separating two classes.

• Inspired by biological neurons, but trained via data.
https://en.wikipedia.org/wiki/Frank_Rosenblatt

• Two Gaussian clusters represent two classes (blue and red).

• The perceptron adjusts weights until it finds a line that separates the 

classes.

• The dashed black line is the decision boundary: 𝑤1𝑥1+𝑤2𝑥2+𝑏=0

https://en.wikipedia.org/wiki/Frank_Rosenblatt
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Perceptron mathematical model

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

For an input vector 𝑥 = 𝑥1 𝑥2 … 𝑥𝑛 :

𝑧 = 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛 + 𝑏 = 𝑤𝑇𝑥 + 𝑏

Output:

Training rule (Rosenblatt learning):          Learning intuition:

Given training examples 𝑥 𝑖 𝑦 𝑖  , update after each sample:

𝑤 ← 𝑤 + 𝜂 𝑦 − ො𝑦 𝑥,  𝑏 ← 𝑏 + 𝜂 𝑦 − ො𝑦

where:

• 𝜂 – learning rate (0.0–1.0);

• 𝑦 – true label;

• ො𝑦 - predicted output

If 𝑦 = 1, ො𝑦 = 0: increase weights for active features.

If 𝑦 = 0, ො𝑦 = 1: decrease weights.

Repeats for all samples → line moves until all points 

are correctly classified 

! if data is linearly separable
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Perceptron algorithm

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

initialize w, b = 0

for epoch in range(max_epochs):

for each (x, y) in training_data:

z = w · x + b

y_hat = 1 if z >= 0 else 0

w = w + η * (y - y_hat) * x

b = b + η * (y - y_hat)

Pseudocode:                               Python example: 

This simple loop implements the 

perceptron learning rule.

Note that it updates weights after 

each sample — this is an early 

form of stochastic gradient 

descent.

This shows that the AND function is linearly separable — it can be perfectly divided 

by a straight line, so the perceptron can learn it



vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Limitations of the perceptron

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

• Works only if data are linearly separable.

• Fails on the XOR problem: No single line can separate (0,1) and (1,0) from (0,0) and (1,1).

• Output is discrete → non-differentiable → can’t use gradient methods directly.

• Leads to development of multi-layer perceptrons (MLP) and backpropagation.

Key takeaway

The perceptron is simple yet foundational.

It introduced:

• The concept of learnable weights.

• Iterative error correction.

• The idea of neurons as basic computational units.

But it also revealed the need for nonlinearity and depth — leading to modern neural networks
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Multilayer Neural Networks. Feedforward Architecture

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Input layer → Hidden layer(s) → Output layer 

Each neuron computes:

Each circle represents a neuron.

Gray lines show the flow of information (weights) from 

one layer to the next.

The layout [2, 3, 1] corresponds to:

• Input layer: 2 neurons (𝑥1, 𝑥2)

• Hidden layer: 3 neurons

• Output layer: 1 neuron (𝑦1)

Each layer takes the output of the previous one, applies 

a linear transformation (weights and biases), and then a 

nonlinear activation function 𝑓(z).

“Feedforward” means information moves strictly in one 

direction — no feedback loops.
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Activation Functions

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Function Formula Description

Tanh f(z)=tanh(z) Zero-centered

Sigmoid Smooth transition, probabilistic output

ReLU f(z)=max(0,z) Efficient, dominant in deep learning

Nonlinearity is key!

Without a nonlinear activation, multiple layers would collapse into a single linear transformation.
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Differentiability and Gradient Descent

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

To train a network, we minimize a loss function — typically Mean Squared Error or Cross-Entropy.

  We adjust each weight in the direction that reduces the loss, using its gradient:

1. Mean Squared Error (MSE)

Used mainly for regression problems (continuous outputs).

Where:

𝑦𝑖 — true target value

ො𝑦𝑖 — predicted output of the network

𝑁 — number of training examples

The MSE measures the average squared difference between predictions and 

true values.

Minimizing it makes the network’s outputs get closer to actual targets.

It’s smooth and differentiable — convenient for gradient-based optimization.

2. Cross-Entropy Loss

Used for classification problems.

(a) Binary classification:

(b) Multi-class classification:

Where:

𝑦𝑖𝑘 = 1, if sample 𝑖 belongs to class 𝑘, otherwise 0

ො𝑦𝑖𝑘 - predicted probability that sample 𝑖 belongs to class 𝑘
𝐾 - number of classes

Cross-entropy penalizes confident but wrong predictions. It measures how 

well the predicted probability distribution ො𝑦 matches the true 

distribution 𝑦. It’s derived from information theory — minimizing it 

corresponds to maximizing likelihood
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Differentiability and Gradient Descent

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

This plot shows a simple quadratic loss surface.

Each contour line represents equal loss values — like elevation

on a map.

The red path shows how the algorithm gradually updates the 

parameters 𝑤1 𝑤2  in the direction of the negative gradient, 

step by step, moving toward the global minimum.

The yellow dot is the minimum of the loss function.

We adjust each weight in the direction that reduces the loss, using its gradient.

That’s the principle of gradient descent.
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Backpropagation

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Backpropagation is not part of the network architecture.

It’s an algorithm used to train the feedforward network — to adjust weights and biases so that the network minimizes a loss 

function.

Backpropagation efficiently applies the chain rule of calculus to compute the gradient of the loss ℒ with respect to every 

weight in the network:

                                                                                   where                               - is the error term for neuron 𝑗.

𝑧𝑗 = ෍
𝑖

𝑤𝑗𝑖 𝑥𝑖 + 𝑏𝑗 is the weighted sum before activation.

Step-by-step Interpretation:
𝜕𝐿

𝜕𝑎𝑗
— how sensitive the loss is to the output of neuron 𝑗 (this comes from the next layer - it’s back-propagated);

𝜕𝑎𝑗

𝜕𝑧𝑗
= 𝑓′ 𝑧𝑗 — how the activation function changes with its input.

𝜕𝑧𝑗

𝜕𝑤𝑗𝑖
= 𝑥𝑖 — because 𝑧𝑗 depends linearly on its input weights.
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Propagating the Error Backward (Summary)

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Each neuron produces output 𝑎𝑗 = 𝑓 ෍
𝑖

𝑤𝑗𝑖 𝑥𝑖 + 𝑏𝑗 .

During learning, backpropagation finds how each 𝑤𝑗𝑖 affects the total loss.

Using the chain rule, we compute

𝜕𝐿

𝜕𝑤𝑗𝑖
= 𝛿𝑗𝑥𝑖

and update weights to reduce the loss.

Errors (𝛿𝑗) move backward through the network — hence the name backpropagation.
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Practical Example – XOR Classification

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

We can now solve the XOR problem using a small Multilayer Perceptron (MLP).

The MLP correctly learns the XOR function. The plot shows a nonlinear decision boundary dividing the (0,0)/(1,1) vs (0,1)/(1,0) regions.
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Key Takeaways

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

• Hidden layers allow nonlinear feature transformations.

• Activation functions provide nonlinearity and gradient flow.

• Backpropagation + gradient descent = core of deep learning.

• Even a small MLP can solve problems unsolvable by a single perceptron.
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Scikit-learn Neural Network Classes Overview

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Aspect Perceptron (sklearn.linear_model.Perceptron) MLPClassifier / MLPRegressor (sklearn.neural_network)

Purpose
Implements the classic single-layer perceptron (linear 

classifier). Suitable for linearly separable data.

Implements a Multi-Layer Perceptron trained by backpropagation. Supports multiple 

hidden layers, nonlinear activation, and various solvers.

Type Linear binary/multiclass classifier Nonlinear classifier (MLPClassifier) or regressor (MLPRegressor)

Training algorithm
Stochastic Gradient Descent (SGD) using the perceptron 

learning rule
Backpropagation with different optimizers: 'adam', 'sgd', or 'lbfgs'

Loss function Hinge-like loss (similar to linear SVM) For classifier: log-loss (cross-entropy); for regressor: squared loss

Activation Sign function (implicitly) 'identity', 'logistic', 'tanh', 'relu'

Hidden layers None — only direct connection from inputs to outputs Configurable: e.g. hidden_layer_sizes=(100,) (1 hidden layer, 100 neurons)

Regularization alpha — L2 penalty on weights alpha — L2 regularization term (default 0.0001)

Learning rate
eta0 (initial learning rate); learning_rate can be 'constant', 

'optimal', or 'invscaling'
learning_rate_init (default 0.001) and schedule: 'constant', 'invscaling', 'adaptive'

Solver 'sgd' (default) 'adam' (default), 'sgd', or 'lbfgs'

Epochs / Iterations
max_iter — number of passes over training data (default 

1000)
max_iter — maximum iterations (default 200)

Batch size Not applicable (uses online or mini-batch SGD implicitly) batch_size — number of samples per gradient update (default 'auto')

Early stopping No early_stopping=True stops training if validation score does not improve

Shuffle shuffle=True shuffles samples each epoch shuffle=True also available

Momentum
Optional: momentum and nesterovs_momentum (if 

solver='sgd')
Also supported when using solver='sgd'

Learning rate control learning_rate, eta0 learning_rate, learning_rate_init

Output layer activation Implicit sign function Determined by task:• 'softmax' (for classification)• Linear (for regression)

Methods
fit(X, y) — trainpredict(X) — labelsscore(X, y) —

accuracypartial_fit(X, y) — online update

fit(X, y) — trainpredict(X) — predictpredict_proba(X) — class probabilitiesscore(X, y) 

— accuracy/R²partial_fit(X, y) — incremental learning

Attributes after fitting
coef_ — weight matrixintercept_ — bias vectorclasses_ —

class labels

coefs_ — list of weight matrices per layerintercepts_ — list of bias vectorsn_iter_, 

loss_, n_layers_, out_activation_

Initialization Random weights Xavier-like initialization internally

Scaling input data Strongly recommended (use StandardScaler) Essential for convergence and stable learning
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Parameter descriptions (summary)

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Parameter Description Common values / notes

hidden_layer_sizes Tuple specifying number of neurons in each hidden layer. (100,) = 1 hidden layer, 100 neurons; (50, 30, 10) = 3 layers

activation Activation function for hidden layers. 'identity', 'logistic', 'tanh', 'relu'

solver Optimization algorithm for weight updates. 'adam' (adaptive), 'sgd', 'lbfgs' (quasi-Newton)

alpha L2 regularization parameter. Smaller → less regularization.

learning_rate_init / eta0 Initial learning rate. e.g., 0.01 or 0.001

max_iter Maximum number of training iterations (epochs). Increase if model doesn’t converge.

tol Tolerance for stopping criteria (min improvement). Default 1e-4

batch_size Number of samples per gradient update (for MLP only). 'auto' or integer

shuffle Shuffle samples each epoch. Default True

momentum Momentum factor for gradient updates (if sgd). Typical 0.9

early_stopping Stop training when validation score stops improving. Default False

validation_fraction
Fraction of training data used for validation when 

early_stopping=True.
Default 0.1

random_state Seed for reproducibility. Integer or None

verbose Prints progress messages. Default False



vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Example (Comparing Perceptron and MLP on Nonlinear Data)

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

By introducing hidden layers and nonlinear activations, MLPs can model complex, nonlinearly 

separable relationships that simple Perceptrons cannot.

In this example, we generate a nonlinearly separable dataset using make_moons() and compare the performance 

of a single-layer Perceptron with a Multilayer Perceptron (MLP).



Let’s proceed to the practical exercises

link:
https://colab.research.google.com/drive/1UfWHQZ

KqWHOiA2No9-AdP3MZDYTqDiii?usp=sharing

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

https://colab.research.google.com/drive/1UfWHQZKqWHOiA2No9-AdP3MZDYTqDiii?usp=sharing
https://colab.research.google.com/drive/1UfWHQZKqWHOiA2No9-AdP3MZDYTqDiii?usp=sharing
https://colab.research.google.com/drive/1UfWHQZKqWHOiA2No9-AdP3MZDYTqDiii?usp=sharing
https://colab.research.google.com/drive/1UfWHQZKqWHOiA2No9-AdP3MZDYTqDiii?usp=sharing
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