
Data Preparation
and

ML Pipeline

Lecture by prof. Dmytro Babets

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

1. Learning Objectives

After this lecture, you will be able to:

1. Explain the purpose and main stages of data preparation.

2. Formulate mathematical descriptions of normalization, standardization,

and encoding.

3. Identify sources of missing data and anomalies, and apply mathematical

tools for their detection.

4. Describe the structure of a machine learning (ML) pipeline and explain its

role in reproducibility and validation.

5. Implement preprocessing and model integration in Python using scikit-

learn.

Data preparation forms the foundation of the ML

workflow. Regardless of the algorithm's sophistication, the

quality of predictions depends heavily on the consistency,

scale, and structure of the input data.

In this lecture, we will:

• review mathematical principles of preprocessing

operations,

• learn to handle missing values and anomalies,

• and understand how preprocessing can be automated in

a structured ML pipeline.

Mathematical rigor in these steps is crucial because

normalization, scaling, and encoding are transformations

of the feature space, which directly influence the

geometry of the data and, consequently, the optimization

landscape of ML algorithms.

Guangyuan's Research and Development Blog: Overview of ML Pipelines

https://parklize.blogspot.com/2019/08/overview-of-ml-pipelines.html
https://parklize.blogspot.com/2019/08/overview-of-ml-pipelines.html

vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Theoretical Background of Data Preparation

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Goal: Transform raw data 𝑋 = ቄ𝑥𝑖}
𝑖=1
𝑛 ⊂ ℝ𝑚 into a consistent numerical representation suitable for ML models.

Main Stages:

1. Data Cleaning

2. Feature Scaling

3. Feature Encoding

4. Feature Selection

Data preparation is the process of mapping

𝑇: 𝑋raw → 𝑋ready,

where 𝑇 is a sequence of transformations ensuring:

• consistency of measurement scales,

• robustness to missing data,

• and numerical suitability for optimization-based learning methods (e.g., gradient descent).

vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Step 1 — Data Cleaning

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Cleaning tasks:

• Detect and handle missing values.

• Remove duplicates and inconsistencies.

• Identify implausible or impossible values.

Mathematical Representation:

Let

Imputation replaces 𝑥𝑖𝑗 when 𝑀𝑖𝑗 = 1 by a function:

The mask matrix 𝑀 ∈ {0,1}𝑛×𝑚 identifies missing entries.

Typical imputation functions 𝑓𝑗 include:

• Mean imputation: 𝑓𝑗 = Ǉ𝑥𝑗.

• Median imputation: 𝑓𝑗 = median(𝑥𝑗).

• Model-based imputation: regression or k-NN imputation:

𝑥𝑖𝑗
∗ =

෍
𝑘∈𝑁𝑖

𝑤𝑖𝑘𝑥𝑘𝑗

σ𝑘∈𝑁𝑖
𝑤𝑖𝑘

,

where 𝑁𝑖 — nearest neighbors of sample 𝑖, 𝑤𝑖𝑘 — similarity weights.

These substitutions are based on the assumption of statistical
continuity of features and minimal distortion of the original data
distribution.

vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Step 2 — Feature Scaling

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Main techniques:

1. Normalization:

𝑥′ =
𝑥 − 𝑥min

𝑥max − 𝑥min
 ∈ 0 1

2. Standardization:

𝑥′ =
𝑥 − 𝜇

𝜎

3. Robust scaling (resistant to outliers)

𝑥′ =
𝑥 − median(𝑥)

IQR(𝑥)

 where IQR is the interquartile range.

Scaling transforms the geometry of the feature space.

Consider a dataset 𝑋 ⊂ ℝ𝑚. Many ML algorithms (SVMs, k-NN,
gradient-based models) rely on distance measures such as
Euclidean norm:

𝑑(𝑥𝑖 , 𝑥𝑗) =∥ 𝑥𝑖 − 𝑥𝑗 ∥2.

Without scaling, features with large magnitude dominate this
distance metric, biasing the learning process.

• Normalization preserves the shape but rescales to a fixed range.

• Standardization centers data around zero with unit variance,
making each feature equally influential.

• Robust scaling (resistant to outliers).

,

vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Step 3 — Feature Encoding

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Why Encoding?

• ML algorithms require numeric input.

• Categorical features must be transformed into numbers while preserving information.

• Improper encoding may distort distances, correlations, and model interpretability.

Example:

𝑋raw = “red” “green” “blue” ⇒ 𝑋encoded = ? ? ?

Feature encoding is the process of mapping categorical variables (nominal or ordinal) into a numerical feature space that a

machine learning algorithm can process.

Let’s denote a categorical feature: 𝑥𝑗 ∈ {𝑐1, 𝑐2, … , 𝑐𝐾}, where K is the number of unique categories.

Encoding defines a function: 𝐸𝑗: {𝑐1, … , 𝑐𝐾} → ℝ𝑑 , that embeds symbolic categories into a vector space of dimension 𝑑, suitable

for further processing by algorithms relying on distance or gradient-based optimization.

Two main types of encoding are used:

• Ordinal encoding (for ordered categories),

• One-hot or binary encoding (for unordered categories).

vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Ordinal Encoding

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Ordinal feature: Categories have a natural order.

Example: Education level

“high school” < “bachelor” < “master” < “PhD”

Encoding:

For ordinal features, the categories possess an inherent ranking,
so the encoding preserves the monotonic relationship:

𝑥𝑖,𝑗1
< 𝑥𝑖,𝑗2

⇒ 𝐸(𝑥𝑖,𝑗1
) < 𝐸(𝑥𝑖,𝑗2

).

Mathematically, the ordinal encoder defines a monotone mapping
𝐸: 𝐶 → ℝ, ensuring that distances between encoded values respect
the order, though not necessarily the magnitude of differences.

Caution: ordinal encoding introduces artificial distances - the
difference between encoded values 1 and 2 may not represent the
same semantic gap as between 3 and 4.

Thus, it should be used only for truly ordered categorical features.
Category Meaning

Encode

d Value

very bad
lowest

satisfaction
1

bad 2

neutral 3

good 4

excellent
highest

satisfaction
5

Key Point

Ordinal encoding assumes ordered categories where numerical
differences have rank meaning but not metric meaning - i.e.,

𝐸(𝑥𝑗 = "𝑚𝑒𝑑𝑖𝑢𝑚") − 𝐸(𝑥𝑗 = "𝑙𝑜𝑤") indicates a higher level, but not
necessarily twice as much in value.

vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

One-Hot Encoding

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Nominal feature: No natural order between categories.

Example 1: color ∈ {red, green, blue}

One-hot encoding:

𝐸 color = 1 0 0 , 0 1 0 , 0 0 1

For nominal (unordered) features, the encoder expands each
category into a binary vector:

𝐸: {𝑐1, … , 𝑐𝐾} → {0,1}𝐾,

such that the vector has a 1 in the position of the corresponding
category and 0 elsewhere.

This mapping is equivalent to creating K basis vectors of the
canonical Euclidean space ℝ𝐾:

𝐸(𝑐𝑘) = 𝑒𝑘 = [0, … , 1, … , 0]𝑇 .

Advantages:

• No artificial order introduced.

• Distances between different categories are equal (orthogonal
vectors).

Drawbacks:

• Dimensionality explosion when 𝐾 is large.

• Sparse representation (many zeros), which may affect
computational efficiency.

To mitigate this, techniques like hash encoding or embedding
representations can be used.

Example 2: country ∈ Poland Germany France Italy

country [Poland] [Germany] [France] [Italy]

Poland 1 0 0 0

Germany 0 1 0 0

France 0 0 1 0

Italy 0 0 0 1

vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Binary Encoding

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Binary Encoding:

•Convert category index into binary representation.

•Compact form of one-hot encoding.

Let 𝑐𝑘 correspond to integer 𝑘. Represent it in binary form
of length ⌈log2 𝐾⌉:

𝐸(𝑐𝑘) = binary(𝑘)

For 5 categories,

𝐸 𝑐1 = 0,0,1 , 𝐸(𝑐2) = [0,1,0], 𝐸(𝑐5) = [1,0,1].

This reduces dimensionality while maintaining
uniqueness.

Example 1. City Names

city ∈ London Paris Rome Berlin Madrid Warsaw Vienna Prague

There are 𝐾 = 8 categories → use log2 8 = 3 bits.

City Integer Code Binary Encoding

London 1 [0,0,1]

Paris 2 [0,1,0]

Rome 3 [0,1,1]

Berlin 4 [1,0,0]

Madrid 5 [1,0,1]

Warsaw 6 [1,1,0]

Vienna 7 [1,1,1]

Prague 8 [0,0,0]

Example 2. Blood Type

blood ∈ A B AB O
𝐾 = 4 ⇒ log2 4 = 2

Blood Type Integer Binary

A 1 [0,1]

B 2 [1,0]

AB 3 [1,1]

O 4 [0,0]

vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Hash Encoding

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Hash Encoding:

Map categories into a fixed number of dimensions via hash

function:

𝐸 𝑐𝑘 = ℎ 𝑐𝑘 mod𝑑

Define a hash function ℎ: 𝐶 → {0,1, … , 𝑑 − 1}.

Collisions may occur, but this approach enables efficient
vectorization of large categorical spaces (e.g., text features).

Hashing is widely used in large-scale applications such as text
vectorization (“hashing trick”) and online learning models.Example 1. Movie Genres

genre ∈ Action Comedy Drama Horror Romance Sci−Fi Documentary

Step 1. Choose the hash space size: 𝑑 = 4.

ℎ genre = sum of character codes mod4

Step 2. Compute a hash index:

• Convert each letter to its ASCII (or Unicode) code.

• Sum all codes.

• Take the remainder when divided by 4.

Genre
Hash Index

(h(genre))
Encoded Vector

Action 2 [0,0,1,0]

Comedy 1 [0,1,0,0]

Drama 2
[0,0,1,0] (collision

with Action)

Horror 3 [0,0,0,1]

Romance 0 [1,0,0,0]

Sci-Fi 1
[0,1,0,0] (collision

with Comedy)

Documentary 3 [0,0,0,1]

Character Code

A 65

c 99

t 116

i 105

o 111

n 110

Sum = 65 + 99 + 116 +

105 + 111 + 110 = 606

Then:

ℎ "Action"
= 606mod4 = 2

vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Feature Selection

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Why Feature Selection and Dimensionality Reduction?

• High-dimensional data → increased model complexity

• Redundant or irrelevant features → overfitting

• Dimensionality reduction → better generalization and

interpretability

Goal:

Simplify model + Preserve information content

Given a dataset

𝑋 ∈ ℝ𝑛×𝑝,

where 𝑛 — number of samples, 𝑝 — number of features.

When 𝑝 ≫ 𝑛 (high-dimensional regime), many features may be
irrelevant or correlated.

Feature selection and dimensionality reduction aim to reduce the
effective dimension 𝑝′ < 𝑝 while preserving the most informative
subspace of the data distribution.

Two main approaches:

1. Feature Selection: choose a subset of the original features.

2. Dimensionality Reduction: transform features into a new, lower-
dimensional basis.

vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Filter methods — independent of model

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Evaluate each feature’s relevance using a score function:

𝑆(𝑥𝑗) = 𝑓(𝑥𝑗 , 𝑦),

such as:

• Pearson correlation coefficient:

𝑟𝑗 =
cov(𝑥𝑗 , 𝑦)

𝜎𝑥𝑗
𝜎𝑦

• Mutual information:

𝐼(𝑥𝑗; 𝑦) = ෍
𝑥𝑗,𝑦

𝑝(𝑥𝑗 , 𝑦) log
𝑝(𝑥𝑗,𝑦)

𝑝(𝑥𝑗)𝑝(𝑦)
,

where p(x,y) represents the probability that both events happen

simultaneously

Keep top-𝑘 features according to 𝑆(𝑥𝑗).

Example

Suppose we have a small dataset predicting whether a student

passes (y=1) or fails (y=0) an exam based on three features:

Student Hours_Study (x₁) Sleep_Hours (x₂) Coffee_Cups (x₃) Passed (y)

A 1 8 0 0

B 2 7 1 0

C 3 7 1 1

D 4 6 2 1

E 5 5 0 1

Feature Relevance via Pearson Correlation - Top feature: Hours_Study (strongest correlation)

Feature Correlation with y Interpretation

Hours_Study (x₁) +0.86

Strong positive

correlation → more

study → higher chance

to pass

Sleep_Hours (x₂) -0.72

Strong negative

correlation → less sleep

→ higher chance to pass

Coffee_Cups (x₃) +0.32

Poor positive correlation

→ more coffee → higher

chance to pass

vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Filter methods - Example

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Feature Relevance via Mutual Information (MI)

Mutual Information measures how much information about y

is provided by xj, capturing nonlinear relationships.

𝐼(𝑥𝑗; 𝑦) = ෍

𝑥𝑗,𝑦

𝑝(𝑥𝑗 , 𝑦) log
𝑝(𝑥𝑗 , 𝑦)

𝑝(𝑥𝑗)𝑝(𝑦)

Feature
Mutual Information

(bits)
Interpretation

Hours_Study (x₁) 0.28
Most informative

about “Pass/Fail”

Coffee_Cups (x₃) 0.11
Moderately

informative

Sleep_Hours (x₂) 0.0 Non informative

compares the joint distribution 𝑝 𝑥 𝑦 with what the joint would

be if the two variables were independent (𝑝 𝑥 𝑝 𝑦)

• If 𝑝 𝑥 𝑦 = 𝑝 𝑥 𝑝 𝑦 : they’re independent → 𝐼 𝑋 𝑌 = 0

• If 𝑝 𝑥 𝑦 differs a lot: they’re dependent → 𝐼 𝑋 𝑌 > 0

Method Measures
Detects

nonlinear?
Example Use

Pearson

correlation
Linear association

Regression, simple

filters

Mutual

information

Shared

information

Complex/nonlinear

tasks

Both combined
Robust feature

selection

Recommended in

pipelines

Feature Pearson MI
Average

Rank

Hours_Study 1 1

Sleep_Hours 2 3

Coffee_Cups 3 2

vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Dimensionality Reduction (PCA)

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Goal:

Find projection 𝑍 = 𝑋𝑊, 𝑊 ∈ ℝ𝑝×𝑘 , 𝑘 < 𝑝

such that 𝑍 retains maximal information about 𝑋

Dimensionality reduction can be formulated as

finding a mapping:

𝑓: ℝ𝑝 → ℝ𝑘 ,

that minimizes information loss or preserves

variance, distances, or probability structure.

PCA seeks orthogonal directions (principal components) that
maximize variance.

Given centered data matrix 𝑋𝑐, compute covariance:

𝑆 =
1

𝑛
𝑋𝑐

⊤𝑋𝑐 .

Then solve eigenvalue problem:

𝑆𝑤𝑗 = 𝜆𝑗𝑤𝑗 .

• 𝑤𝑗: principal directions

• 𝜆𝑗: explained variance

The projection:

𝑍 = 𝑋𝑐𝑊𝑘 ,

where 𝑊𝑘contains top 𝑘eigenvectors.

Feature Reduction Impact:

Benefits:

• Improved generalization

• Reduced training time

• Simplified model interpretation

Mathematically:

Find 𝑓(𝑋): ℝ𝑝 → ℝ𝑘 , 𝑘 < 𝑝

such that:

𝐼(𝑌; 𝑓(𝑋)) ≈ 𝐼(𝑌; 𝑋)

Retain maximal information about target 𝑌.

vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Step 1. Data Cleaning — Python Implementation Overview

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Category Class / Function
Library /

Module
Main Parameters Description / Purpose

Missing values

detection

DataFrame.isnull() /

DataFrame.isna()
pandas — Returns a Boolean mask showing which entries are missing (NaN).

DataFrame.notnull() /

DataFrame.notna()
pandas — Returns Boolean mask for non-missing entries.

DataFrame.info() pandas —
Displays non-null counts and data types of each column — useful for quick

missing-value inspection.

Counting missing

values
DataFrame.isnull().sum() pandas — Computes the total number of missing entries per column.

Handling missing

values
DataFrame.dropna() pandas axis={0,1}, how={'any','all'}, subset, inplace Removes rows or columns containing missing values.

DataFrame.fillna() pandas value, method={'ffill','bfill'}, axis, inplace
Fills missing values with a specified constant or by forward/backward

propagation.

Statistical imputation SimpleImputer sklearn.impute

missing_values,

strategy={'mean','median','most_frequent','cons

tant'}, fill_value

Replaces missing values with a computed statistic or a constant.

Advanced imputation KNNImputer sklearn.impute
n_neighbors, weights={'uniform','distance'},

metric
Imputes missing values using the k-nearest neighbors algorithm.

Iterative model-based

imputation
IterativeImputer sklearn.impute estimator, max_iter, random_state

Predicts missing values by iteratively modeling each feature as a function of

others.

Duplicate detection DataFrame.duplicated() pandas subset, keep={'first','last',False} Returns Boolean Series marking duplicated rows.

Duplicate removal DataFrame.drop_duplicates() pandas subset, keep, inplace Removes duplicate rows from the dataset.

Detecting implausible

values
DataFrame.describe() pandas include, percentiles Provides summary statistics for detecting out-of-range or unrealistic values.

DataFrame.clip() pandas lower, upper Limits values within specified bounds to remove extreme outliers.

Data type correction DataFrame.astype() pandas dtype, errors={'raise','ignore'} Converts columns to correct data types (e.g., categorical, numeric).

Replace inconsistent

labels
DataFrame.replace() pandas to_replace, value, regex Replaces incorrect or inconsistent categorical labels.

vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Feature Scaling — Python Implementation Overview

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Category Class / Function Library / Module Main Parameters Description / Purpose

Standardization (Z-score

scaling)
StandardScaler sklearn.preprocessing

with_mean=True, with_std=True,

copy=True

Scales features to zero mean and unit variance.

Common for linear models, PCA, SVMs.

Min–Max normalization MinMaxScaler sklearn.preprocessing feature_range=(0,1), clip=False
Rescales data to a fixed interval [a,b]

Useful for neural networks.

Robust scaling (outlier-

resistant)
RobustScaler sklearn.preprocessing

with_centering=True,

with_scaling=True,

quantile_range=(25.0,75.0)

Scales using median and IQR (interquartile range).

Reduces the influence of outliers.

Normalization (L1, L2, Max) Normalizer sklearn.preprocessing norm={'l1','l2','max'}
Scales samples (rows) to have unit norm.

Often used in text and distance-based models.

Quantile transformation

(nonlinear scaling)
QuantileTransformer sklearn.preprocessing

n_quantiles,

output_distribution={'uniform’,

'normal'}, random_state

Maps data to a uniform or Gaussian distribution using

empirical quantiles. Reduces effect of outliers and

skewness.

Power transformation

(variance stabilization)
PowerTransformer sklearn.preprocessing

method={'yeo-johnson','box-cox'},

standardize=True

Applies a power-law transform to make data more

Gaussian-like. Useful for skewed positive data.

Column-wise application ColumnTransformer sklearn.compose transformers, remainder
Allows applying different scalers to different feature

subsets (e.g., numeric vs categorical).

Feature scaling ensures that all numerical features contribute equally to model learning and prevents those with large magnitudes from dominating gradient

descent updates or distance computations.

vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Feature Encoding - sklearn

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Class / Function Description Key Parameters Example Usage

sklearn.preprocessing.LabelEncoder

Encodes categorical labels

(strings) into integers (0, 1, 2, …).

Used for target variables or single

categorical columns.

—
le = LabelEncoder();

y = le.fit_transform(y_raw)

sklearn.preprocessing.OrdinalEncoder

Converts categorical features into

integer values according to

specified or learned ordering.

Useful for ordinal features (e.g.,

education level).

categories='auto', dtype=float,

handle_unknown='use_encode

d_value'

enc = OrdinalEncoder();

X_enc = enc.fit_transform(X[['Education']])

sklearn.preprocessing.OneHotEncoder

Converts categorical features into

one-hot (dummy) binary columns.

Avoids ordinal relationships.

sparse_output=False,

drop='first',

handle_unknown='ignore'

ohe = OneHotEncoder();

X_ohe = ohe.fit_transform(X[['City']])

sklearn.compose.ColumnTransformer

Combines multiple

encoders/scalers applied to

different columns in a single

pipeline.

transformers=[('ohe',

OneHotEncoder(),

cat_features), ('scaler',

StandardScaler(),

num_features)]

ct = ColumnTransformer([...]); X_proc =

ct.fit_transform(X)

• LabelEncoder should only be used for target variables, not for input features (because it imposes false ordinality).

• OrdinalEncoder is best suited for ordered categories (e.g., “low < medium < high”).

• OneHotEncoder or pd.get_dummies are preferred for nominal categories.

• ColumnTransformer is essential for combining encoding and scaling in a single ML pipeline.

vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Feature Selection (Filter Methods) & Dimensionality Reduction (PCA)

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Class / Function Description Key Parameters Example Usage

sklearn.feature_selection.VarianceThr

eshold

Removes all features whose variance does

not meet a specified threshold (useful for

eliminating constant or quasi-constant

features).

threshold=0.0
sel = VarianceThreshold(threshold=0.01);

X_sel = sel.fit_transform(X)

sklearn.feature_selection.SelectKBest

Selects the top k features according to a

statistical score (ANOVA F-value, chi-

squared, mutual information, etc.).

score_func=f_classif,

k=10

sel = SelectKBest(score_func=f_classif, k=5);

X_new = sel.fit_transform(X, y)

sklearn.feature_selection.SelectPerce

ntile

Selects a user-specified top percentage of

features with the highest scores.

score_func=chi2,

percentile=20

sel = SelectPercentile(score_func=chi2,

percentile=20);

X_new = sel.fit_transform(X, y)

sklearn.feature_selection.mutual_info

_classif / mutual_info_regression

Computes the mutual information

(information gain) between each feature

and the target variable. Non-parametric and

captures nonlinear relationships.

discrete_features='aut

o', n_neighbors=3,

random_state=None

mi = mutual_info_classif(X, y);

pd.Series(mi, index=X.columns)

sklearn.decomposition.PCA

Performs Principal Component Analysis to

reduce dimensionality while preserving

maximal variance. Linear orthogonal

transformation.

n_components,

svd_solver, whiten,

random_state

pca = PCA(n_components=2);

X_pca = pca.fit_transform(X_scaled)

• Filter methods evaluate each feature independently of others — fast and interpretable but may ignore feature interactions.

• Mutual Information is statistical dependency measurer used before model training.

• PCA finds new orthogonal components maximizing variance — mathematically based on eigenvalue decomposition of the covariance matrix.

• Choose the number of components 𝑘 based on the explained variance ratio (pca.explained_variance_ratio_).

vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Titanic ML pipeline code (ML pipeline step by step)

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Column Type Description

pclass Categorical (1, 2, 3)
Passenger class (1st, 2nd, 3rd) — proxy for

social/economic status.

sex Categorical (male, female) Passenger’s gender.

age Numerical Passenger’s age (may contain missing values).

sibsp Numerical Number of siblings/spouses aboard.

parch Numerical Number of parents/children aboard.

fare Numerical Ticket fare.

embarked Categorical Port of embarkation (C, Q, S).

survived Target (binary) 1 = survived, 0 = died.

vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Titanic ML pipeline code (ML pipeline step by step)

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Stage Purpose Mathematical Aspect Transformation Example

Data Cleaning
Replace missing values using

statistical measures
NaN → 29.7

Feature Scaling
Normalize variance & remove

unit dependency
Age=22 → -0.43

vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Titanic ML pipeline code (ML pipeline step by step)

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Stage Purpose Mathematical Aspect Transformation Example

Feature Encoding
Map categorical data to

numeric vectors
sex=female → [1,0]

Feature Selection
Remove low-variance

(uninformative) features
drops constants

vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Building an ML Pipeline (Integration of All Steps)

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Class / Function Description Key Parameters Example Usage

sklearn.pipeline.Pipeline
Sequentially connects preprocessing and modeling steps

into one composite estimator. Each step executes in order.

steps=[('scaler',

StandardScaler()), ('model',

LogisticRegression())], verbose

pipe = Pipeline([...]);

pipe.fit(X_train, y_train)

sklearn.compose.Column

Transformer

Applies different transformations to different columns

(e.g., scaling for numerical, encoding for categorical).

transformers=[('num', scaler,

num_cols), ('cat', encoder,

cat_cols)], remainder='drop'

ct = ColumnTransformer([...])

sklearn.model_selection.

cross_val_score
Evaluates entire pipeline performance via cross-validation. cv=5, scoring='accuracy' cross_val_score(pipe, X, y, cv=5)

sklearn.metrics (e.g.

accuracy_score,

classification_report)

Evaluates pipeline output on test data. —
y_pred = pipe.predict(X_test);

accuracy_score(y_test, y_pred)

sklearn.pipeline.make_pi

peline

Simplified factory method for creating pipelines without

naming steps explicitly.
*steps

pipe =

make_pipeline(StandardScaler(),

SVC())

Key Concepts

1. A Pipeline guarantees that all transformations are applied consistently during both training and inference.

2. It simplifies cross-validation and hyperparameter tuning — all preprocessing happens inside each fold.

3. You can include preprocessing (scaling, encoding, feature selection), anomaly handling, and the model in a single workflow.

4. It ensures no data leakage — transformations are fit only on the training portion.

vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Complete Code Example — Full Titanic Data Pipeline

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

Complete Code Example — Full Titanic Data Pipeline

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Predict the survival of a new (random) passenger:

vm.nmu.org.ua
НТУ «Дніпровська політехніка» | Кафедра прикладної математики

From Raw Data to Prediction — Key Concepts

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Stage Tool / Concept Purpose in the ML Workflow

1. Data Understanding pandas, info(), describe() Explore structure, detect missing values, identify data types.

2. Data Cleaning Imputer (SimpleImputer) Fill or remove missing data consistently.

3. Feature Preparation Encoder (OneHotEncoder), Scaler (StandardScaler) Convert categories and scale numerical features for model readiness.

4. Feature Selection /

Reduction
Filter methods, PCA Keep the most informative features, reduce dimensionality and noise.

5. Transformation Control ColumnTransformer Apply different transformations to specific feature groups.

6. Workflow Automation Pipeline
Combine preprocessing + model training into a single repeatable

process.

7. Model Training LogisticRegression, RandomForest, etc. Learn relationships from training data.

8. Validation & Testing Cross-validation, train_test_split Evaluate model performance and generalization.

9. Real-world Use predict() / predict_proba() Make predictions for new (unseen) samples.

A good ML model is not just a classifier — it’s a reproducible pipeline that transforms raw data

into reliable predictions

Let’s proceed to the team project

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

	Слайд 1: Data Preparation and ML Pipeline
	Слайд 2: 1. Learning Objectives
	Слайд 3: Theoretical Background of Data Preparation
	Слайд 4: Step 1 — Data Cleaning
	Слайд 5: Step 2 — Feature Scaling
	Слайд 6: Step 3 — Feature Encoding
	Слайд 7: Ordinal Encoding
	Слайд 8: One-Hot Encoding
	Слайд 9: Binary Encoding
	Слайд 10: Hash Encoding
	Слайд 11: Feature Selection
	Слайд 12: Filter methods — independent of model
	Слайд 13: Filter methods - Example
	Слайд 14: Dimensionality Reduction (PCA)
	Слайд 15: Step 1. Data Cleaning — Python Implementation Overview
	Слайд 16: Feature Scaling — Python Implementation Overview
	Слайд 17: Feature Encoding - sklearn
	Слайд 18: Feature Selection (Filter Methods) & Dimensionality Reduction (PCA)
	Слайд 19: Titanic ML pipeline code (ML pipeline step by step)
	Слайд 20: Titanic ML pipeline code (ML pipeline step by step)
	Слайд 21: Titanic ML pipeline code (ML pipeline step by step)
	Слайд 22: Building an ML Pipeline (Integration of All Steps)
	Слайд 23: Complete Code Example — Full Titanic Data Pipeline
	Слайд 24: Complete Code Example — Full Titanic Data Pipeline
	Слайд 25: From Raw Data to Prediction — Key Concepts
	Слайд 26: Let’s proceed to the team project

