)

7‘ DNIPRO UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF APPLIED

AV8 MATHEMATICS

Data Preparation
and
ML Pipeline

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Lecture by prof. Dmytro Babets

1. Learning Objectives

After this lecture, you will be able to: Data preparation forms the foundation of the ML

1. Explain the purpose and main stages of data preparation. workflow. Regardless of the algorithm's sophistication, the

2. Formulate mathematical descriptions of normalization, standardization, quality of predictions depends heavily on the consistency,

and encoding.

scale, and structure of the input data.

3. lIdentify sources of missing data and anomalies, and apply mathematical In this lecture, we will:

tools for their detection.
4. Describe the structure of a machine learning (ML) pipeline and explain its
role in reproducibility and validation.

5. Implement preprocessing and model integration in Python using scikit-

learn.

Machine Learning Pipeline: Overview

Gathering
Data Sources

* review mathematical principles of preprocessing
operations,

* learn to handle missing values and anomalies,

» and understand how preprocessing can be automated in

a structured ML pipeline.

Mathematical rigor in these steps is crucial because

normalization, scaling, and encoding are transformations

Feature

Y % =» 4% » 5 mp / of the feature space, which directly influence the

Data Analysis

Engineering

geometry of the data and, consequently, the optimization

Data Pre- Variable Machine Model building landscape of ML algorithms.

Learning Model Business uplift
processing selection :
building evaluation

/‘ HTY «/HinpoBcbKa nonitexHika» | Kadeapa npukaagHoi MaTeMaTUKK Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

-
B4 vm.nmu.org.ua

https://parklize.blogspot.com/2019/08/overview-of-ml-pipelines.html
https://parklize.blogspot.com/2019/08/overview-of-ml-pipelines.html

Theoretical Background of Data Preparation

Goal: Transform raw data X = {xi}?=1 c R™ into a consistent numerical representation suitable for ML models.

Main Stages:

1. Data Cleaning Data Preparation Pipeline

2. Feature Scaling

3 . Fe atu r e En C O d.l n g Raw Data I Data Cleaning I Feature Scaling I Feature Encoding I Feature Selection Eeady Data for ML Mude]

4. Feature Selection

Data preparation is the process of mapping

TI: Xraw = Xready:
where T is a sequence of transformations ensuring:
consistency of measurement scales,
robustness to missing data,
. and numerical suitability for optimization-based learning methods (e.g., gradient descent).
o)
7’ T—ITV «/IHiNpOBCbKa noniTexHika» | Kadbeapa npuknagHoi matematkn Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

<
B4 vm.nmu.org.ua

Step 1 — Data Cleaning

Cleaning tasks:

o The mask matrix M € {0,1}"*™ identifies missing entries.
* Detect and handle missing values.

. . . . Typical imputation functions f; include:
* Remove duplicates and inconsistencies.
o . . . Mean imputation: f; = x;.
* |dentify implausible or impossible values.
. . Median imputation: f; = median(Xx;).
Mathematical Representation:
Let Model-based imputation: regression or k-NN imputation:
e
M. — 1, if z;; is missing, zkeN-Wikxkj

*

i .
0, otherwise. Xij =

)

ZkENi Wik

where N; — nearest neighbors of sample i, w;, — similarity weights.

Imputation replaces x;; when M;; = 1 by a function: These substitutions are based on the assumption of statistical

. continuity of features and minimal distortion of the original data
zi; = Fi(Xobserved)- distribution.

o

/“ HTY «/HinpoBcbKa nonitexHika» | Kadeapa npukaagHoi MaTeMaTUKK Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

<
B4 vm.nmu.org.ua

Step 2 — Feature Scaling

Main techniques:
Scaling transforms the geometry of the feature space.

Consider a dataset X ¢ R™. Many ML algorithms (SVMs, k-NN,
gradient-based models) rely on distance measures such as

1. Normalization:

X — Xmin

v = € [01] Euclidean norm:
Xmax — Xmin d(xl-,xj) =1l x; — x; I,
Without scaling, features with large magnitude dominate this
2. Standardization: distance metric, biasing the learning process.
Cox—p Normalization preserves the shape but rescales to a fixed range.
X = o . Standardization centers data around zero with unit variance,

making each feature equally influential.

Robust scaling (resistant to outliers).
3. Robust scaling (resistant to outliers)

. x — median(x)
X =
IQR(x)
mj where IQR is the interquartile range.

/‘A‘ HTY «/HinpoBcbKa nonitexHika» | Kadeapa npukaagHoi MaTeMaTUKK Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"
vm.nmu.org.ua

&

Step 3 — Feature Encoding

Why Encoding?

* ML algorithms require numeric input.

 Categorical features must be transformed into numbers while preserving information.
 Improper encoding may distort distances, correlations, and model interpretability.

Example:

Xraw = | "red” "green” "blue’l = X oncoded=17"7"71

Feature encoding is the process of mapping categorical variables (nominal or ordinal) into a humerical feature space that a
machine learning algorithm can process.

Let’s denote a categorical feature: x; € {cy, ¢, ..., cx}, where K is the number of unique categories.

Encoding defines a function: Ej: {cy, ..., cx} - R4, that embeds symbolic categories into a vector space of dimension d, suitable
for further processing by algorithms relying on distance or gradient-based optimization.

Two main types of encoding are used:
* Ordinal encoding (for ordered categories),
* One-hot or binary encoding (for unordered categories).

oy

/4\‘ HTY «/HinpoBcbKa nonitexHika» | Kadeapa npukaagHoi MaTeMaTUKK Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"
vm.nmu.org.ua

&

Ordinal Encoding

Ordinal feature: Categories have a natural order.

Example: Education level

Encoding: E(z;) = <

“high school” < “bachelor” < “master” < “PhD”

if 2; = “high school”
if z; = “bachelor”

if z; = “master”

if z; = “PhD”

Category Meaning 5?233:

lowest

very bad satisfaction 1

bad 2

neutral 3

good 4
excellent h.1ghes.t

satisfaction

o

D) EG)

\

S

if =
if =
if L j
if I

if z;

[
L)\‘ HTY «/HinpoBcbKa nonitexHika» | Kadeapa npukaagHoi MaTeMaTUKK

&

vm.nmu.org.ua

= “very bad”
— Hbad??

— “neutral”
— HgDDdH

— “excellent”

For ordinal features, the categories possess an inherent ranking,
so the encoding preserves the monotonic relationship:
xi,jl < xi,jz = E(xi,jl) < E(xi,jz)'

Mathematically, the ordinal encoder defines a monotone mapping
E:C - R, ensuring that distances between encoded values respect
the order, though not necessarily the magnitude of differences.

Caution: ordinal encoding introduces artificial distances - the
difference between encoded values 1 and 2 may not represent the
same semantic gap as between 3 and 4.

Thus, it should be used only for truly ordered categorical features.

Key Point

Ordinal encoding assumes ordered categories where numerical
differences have rank meaning but not metric meaning - i.e.,

E(x; = "medium”) — E(x; = "low") indicates a higher level, but not
necessarily twice as much in value.

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

One-Hot Encoding

Nominal feature: No natural order between categories.

Example 1: color € {red, green, blue}

One-hot encoding:

E(color) =11 0 0], [0 1 0], [0 0 1]

Example 2: country € {Poland Germany France Italy}

country [Poland] [Germany] [France] [Italy]
Poland 1 0 0 0
Germany 0 1 0 0
France 0 0 1 0
ltaly 0 0 0 1
1 0 0 0]
0 1 0 O
E(country) = 00 1 0
0 0 0 1

o

e
L)\‘ HTY «/HinpoBcbKa nonitexHika» | Kadeapa npukaagHoi MaTeMaTUKK
vm.nmu.org.ua

&

For nominal (unordered) features, the encoder expands each
category into a binary vector:

E: {Cl, e CK} - {O,l}K;

such that the vector has a 1 in the position of the corresponding
category and O elsewhere.

This mapping is equivalent to creating K basis vectors of the
canonical Euclidean space RX:

E(cy) = e, =]0,..., 1, ...,O]T.
Advantages:
No artificial order introduced.

Distances between different categories are equal (orthogonal
vectors).

Drawbacks:
Dimensionality explosion when K is large.

Sparse representation (many zeros), which may affect
computational efficiency.

To mitigate this, techniques like hash encoding or embedding
representations can be used.

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Binary Encoding

Binary Encoding: Let ¢, correspond to integer k. Represent it in binary form

of length [log, K|:
«Convert category index into binary representation. gth [logz K|
. E(c,) = binary(k)
Compact form of one-hot encoding.
For 5 categories,

E(c;) =[0,0,1],E(cy) =[0,1,0], E(cs) = [1,0,1].
This reduces dimensionality while maintaining

Example 1. City Names

city € {Londomn Paris Rome Berlir Madrid Warsaw Vienna Prague} .
uniqueness.

There are K = 8 categories — use [log, 8] = 3 bits.
Example 2. Blood Type

City Integer Code Binary Encoding
London 1 0,0,1] blood € {4 B AP 0}

Paris 2 0,1,0] K=4=] log,4| =2

Rome 3 0,1,1]

Berlin 4 1,0,0] Blood Type Integer Binary
Madrid 5 1,0,1] A 1 0,1
Warsaw 6 1,1,0] B 2 [1,0]
Vienna 7 [1,1,1] AB 3 1,1
Prague 8 0,0,0 O 4 0,0]

o/

'LA‘ HTY «/[lHinpoBCbKa nonitexHika» | Kadeapa npukiagHOT MaTeMaTUKK Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

B8 vm.nmu.org.ua

Hash Encoding

Hash Encoding:
Define a hash function h: C - {0,1, ...,d — 1}.

Map categories into a fixed number of dimensions via hash o . o
Collisions may occur, but this approach enables efficient

function: vectorization of large categorical spaces (e.g., text features).

E(cx) = h(cx) modd Hashing is widely used in large-scale applications such as text

Example 1. Movie Genres vectorization (“hashing trick”) and online learning models.

genre € {Actiorr Comedy Drama Horror Romance Sci—Fi Documentary}

Step 1. Choose the hash space size: d = 4.

h(genre) = (sum of character codes) mod4

Hash Index Encoded Vector

Step 2. Compute a hash index:

| . (h(genre))
« Convert each letter to its ASCII (or Unicode) code. Action 2 [0,0,1,0]

 Sum all codes.
« Take the remainder when divided by 4. Comedy ! [0’1’0’01, :
[0,0,1,0] (collision

Drama 2 - :
Character Code with Action)

A 65 Sum =65 +99 + 116 +
c 99 :> 105 + 111 + 110 = 606 j> Horror 3 [0,0,0,1]
t 116 Then: Romance 0 [1,0,0,0]
) h("Action”) ..
1 105 - _ . [0,1,0,0] (collision
; > = 606mod4 = 2 Sci-Fi 1 with Comedy)
w n 110 Documentary 3 [0,0,0,1]
B/

'LA‘ HTY «/lHinpoBCcbKa nonitexHika» | Kadbeapa npukaagHoi MaTeMaTHKH Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

B4 vm.nmu.org.ua

Feature Selection

Why Feature Selection and Dimensionality Reduction? Given a dataset

. X € R"Xp
* High-dimensional data — increased model complexity ‘

« Redundant or irrelevant features — overfitting where n — number of samples, p — number of features.

» Dimensionality reduction — better generalization and When p »>mn (high-dimensional regime), many features may be

irrelevant or correlated.

interpretabilit
P y Feature selection and dimensionality reduction aim to reduce the

Goal: effective dimension p’ < p while preserving the most informative

Simplify model + Preserve information content subspace of the data distribution.

Two main approaches:
1. Feature Selection: choose a subset of the original features.

O O O O O 2. Dimensionality Reduction: transform features into a new, lower-
l Ranking dimensional basis.

00000 | *

'2.
lSelection - > &0
2

O O O _2_ _:—_
T a— s =0 50 —25 00 2.5 5.0
. 2. R 2 . b

/‘! HTY «/HinpoBcbKa nonitexHika» | Kadeapa npukaagHoi MaTeMaTUKK Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"
B4 vm.nmu.org.ua

Filter methods — independent of model

Evaluate each feature’s relevance using a score function:

S(x;) = f(x,),
such as:

Pearson correlation coefficient:

_cov(x;,y)
Oyx;0y

T
Mutual information:

p(xjy)
p(x)p)’

[(x;;y) = z p(x;,y)log
xj,y

where p(x,y) represents the probability that both events happen
simultaneously

Keep top-k features according to S(x;).

o

Example
Suppose we have a small dataset predicting whether a student
passes (y=1) or fails (y=0) an exam based on three features:

Student Hours_Study (x1) Sleep_Hours (x2) Coffee_Cups (x3) Passed (y)
A 8 0 0
B 2 7 1 0
C 3 7 1 1
D 4 6 2 1
E 5 5 0 1

Feature Relevance via Pearson Correlation - Top feature: Hours_Study (strongest correlation)

Feature Correlation with y

Hours_Study (x1) +0.86

Interpretation

Strong positive
correlation — more
study — higher chance
to pass

Sleep_Hours (x2) -0.72

Strong negative
correlation — less sleep
— higher chance to pass

Coffee_Cups (x3) +0.32

Poor positive correlation
— more coffee — higher
chance to pass

'LA‘ HTY «/[lHinpoBCbKa nonitexHika» | Kadeapa npukiagHOT MaTeMaTUKK Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

B4 vm.nmu.org.ua

Filter methods - Example

Feature Relevance via Mutual Information (MI)

Mutual Information measures how much information about v

is provided by x,, capturing nonlinear relationships.

p(x;,y)
p(xj)p(y)

I(xj;y) = Z p(x;,y)log

X5y
compares the joint distribution p(x’y) with what the joint would
be if the two variables were independent (p(x)p(y))

* If p(xry) = p(x)p(y) : they’re independent — I(X;Y) =0

 If p(x»y) differs a lot: they’re dependent — I(X;Y) > 0

Feature

Mutual Information
(bits)

Interpretation

Most informative

Hours_Study (x1) 0.28 about “Pass/Fail”

Coffee_Cups (x3) 0.11 M oderatgly
informative

Sleep_Hours (x2) 0.0 Non informative

Feature

Pearson

Average

Rank

Hours_Study 1 1 ¥
Sleep_Hours 2 3 4
Coffee_Cups 3 2 X

Method Measures Dete.c £ Example Use
nonlinear?

Pearson. Linear association 3¢ Rggressmn, simple

correlation filters

Mutual Shared - Complex/nonlinear

information information tasks

Both combined Robus’g feature Rgcommended in
selection pipelines

o/

@ HTY «/[lHinpoBCbKa nonitexHika» | Kadeapa npukiagHOT MaTeMaTUKK
'h vm.nmu.org.ua

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Dimensionality Reduction (PCA)

PCA seeks orthogonal directions (principal components) that

Goal: maximize variance.
Find projection Z = XW, W eRP k<p Given centered data matrix X, compute covariance:
such that Z retains maximal information about X ¢ — EXTX
— n C c*
Then solve eigenvalue problem:
Dimensionality reduction can be formulated as _
finding a mapping: . wj: principal directions
f:RP > R¥, . A;: explained variance

that minimizes information loss or preserves The projection:

Z =X W,

variance, distances, or probability structure.
where W, contains top keigenvectors.

Feature Reduction Impact:
Mathematically:

Find f(X):RP - R¥, k <p

* Improved generalization
> such that:
« Reduced training time
I(Y; f(X)) = I(Y; X)

Retain maximal information about target Y.

Benefits:

« Simplified model interpretation

o

4 HTY «/lHinpoBCbKa nonitexHika» | Kadeapa npukiagHOT MaTeMaTUKM Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"
Y8 vm.nmu.org.ua

Step 1. Data Cleaning — Python Implementation Overview

Library /

Class / Function Main Parameters Description / Purpose
Module
Mlssmg values DataFrame.!snull() / pandas — Returns a Boolean mask showing which entries are missing (NaN).
detection DataFrame.isna()
DataFrame.notnull() / pandas — Returns Boolean mask for non-missing entries.

DataFrame.notna()

Displays non-null counts and data types of each column — useful for quick

Datarrame. info(pandas B missing-value inspection.
\Cl:lt:;;tsing missing DataFrame.isnull().sum() ~ pandas — Computes the total number of missing entries per column.
\I;I:ltcll;ng missing DataFrame.dropna() pandas axis={0,1}, how={"any','all’}, subset, inplace Removes rows or columns containing missing values.
DataFrame. fillna() pandas value, method={ffill' 'bfill, axis, inplace Fills missing values with a specified constant or by forward/backward

propagation.

missing_values,
Statistical imputation Simplelmputer sklearn.impute strategy={'mean’,'median’,'most_frequent','cons Replaces missing values with a computed statistic or a constant.
tant’}, fill_value
n_neighbors, weights={'uniform’, distance’},

Advanced imputation KNNImputer sklearn.impute metric Imputes missing values using the k-nearest neighbors algorithm.

Iterative model-based : : : : Predicts missing values by iteratively modeling each feature as a function of

. : Iterativelmputer sklearn.impute estimator, max_iter, random_state

imputation others.

Duplicate detection DataFrame.duplicated() pandas subset, keep={'first’,'last’,False} Returns Boolean Series marking duplicated rows.

Duplicate removal DataFrame.drop_duplicates() pandas subset, keep, inplace Removes duplicate rows from the dataset.

eaeltj;tlng implausible DataFrame.describe() pandas include, percentiles Provides summary statistics for detecting out-of-range or unrealistic values.
DataFrame.clip() pandas lower, upper Limits values within specified bounds to remove extreme outliers.

Data type correction DataFrame.astype() pandas dtype, errors={'raise’,'ignore'} Converts columns to correct data types (e.g., categorical, numeric).

Replace inconsistent DataFrame.replace() pandas to_replace, value, regex Replaces incorrect or inconsistent categorical labels.

labels

o

'@. HTY «/[lHinpoBCbKa nonitexHika» | Kadeapa npukiagHOT MaTeMaTUKK Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"
B4 vm.nmu.org.ua

Feature Scaling — Python Implementation Overview

Category Class / Function Library / Module Main Parameters Description / Purpose

Standardization (Z-score
scaling)

with_mean=True, with_std=True, Scales features to zero mean and unit variance.

StandardScaler sklearn.preprocessing copy=True Common for linear models, PCA, SVMs.

Rescales data to a fixed interval [a,b]

Min-Max normalization MinMaxScaler sklearn.preprocessing feature_range=(0,1), clip=False Useful for neural networks.

with_centering=True,

Robust scaling (outlier- RobustScaler sklearn.preprocessing with_scaling=True,

Scales using median and IQR (interquartile range).

resistant) quantile_range=(25.0,75.0) Reduces the influence of outliers.
e : : P . Scales samples (rows) to have unit norm.
Normalization (L1, L2, Max) Normalizer sklearn.preprocessing norm={11,'12','max’} Often used in text and distance-based models.
. . n_quantiles, Maps data to a uniform or Gaussian distribution using

Quantile transformation : : . o , . . .

. . QuantileTransformer sklearn.preprocessing output_distribution={'uniform’, = empirical quantiles. Reduces effect of outliers and
(nonlinear scaling) . :

normal’}, random_state skewness.

Power transformation PowerTransformer sklearn. breprocessin method={'yeo-johnson’,'box-cox’}, Applies a power-law transform to make data more
(variance stabilization) -Prep € standardize=True Gaussian-like. Useful for skewed positive data.
Column-wise application ColumnTransformer sklearn.compose transformers, remainder Allows applying different scalers to different feature

subsets (e.g., numeric vs categorical).

Feature scaling ensures that all numerical features contribute equally to model learning and prevents those with large magnitudes from dominating gradient

descent updates or distance computations.
L 45

./“ HTY «/HinpoBcbKa nonitexHika» | Kadeapa npukaagHoi MaTeMaTUKK Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"
vm.nmu.org.ua

&

Feature Encoding - sklearn

Description

Encodes categorical labels
(strings) into integers (0, 1, 2, ...).
Used for target variables or single
categorical columns.

Class / Function

sklearn.preprocessing.LabelEncoder

Example Usage

Key Parameters

le = LabelEncoder();
y = le.fit_transform(y_raw)

Converts categorical features into
integer values according to
specified or learned ordering.
Useful for ordinal features (e.g.,
education level).

sklearn.preprocessing.OrdinalEncoder

categories='auto’, dtype=float,
handle_unknown='use_encode
d_value'

enc = OrdinalEncoder();
X_enc = enc.fit_transform(X[['Education]])

Converts categorical features into
one-hot (dummy) binary columns.
Avoids ordinal relationships.

sklearn.preprocessing.OneHotEncoder

sparse_output=False,
drop="first’,
handle_unknown="ignore'

ohe = OneHotEncoder();
X_ohe = ohe.fit_transform(X[['City]])

Combines multiple
encoders/scalers applied to
different columns in a single
pipeline.

sklearn.compose.ColumnTransformer

transformers=[(‘'ohe’,

OneHotEncoderl(), , ct = ColumnTransformer([...]); X_proc =
cat_features), (‘'scaler’, ct.fit_transform(X)
StandardScaler(), T

num_features)]

o

Ne HTY «/HinpoBcbka nonitexHika» | Kadeapa npukiagHOT MaTeMaTHKU
vm.nmu.org.ua

&

LabelEncoder should only be used for target variables, not for input features (because it imposes false ordinality).
OrdinalEncoder is best suited for ordered categories (e.g., “low < medium < high”).
OneHotEncoder or pd.get_dummies are preferred for nominal categories.

ColumnTransformer is essential for combining encoding and scaling in a single ML pipeline.

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Feature Selection (Filter Methods) & Dimensionality Reduction (PCA)

Class / Function

sklearn.feature_selection.VarianceThr
eshold

Description

Removes all features whose variance does
not meet a specified threshold (useful for
eliminating constant or quasi-constant
features).

Key Parameters

threshold=0.0

Example Usage

sel = VarianceThreshold(threshold=0.01);
X_sel = sel.fit_transform(X)

sklearn.feature_selection.SelectKBest

Selects the top k features according to a
statistical score (ANOVA F-value, chi-
squared, mutual information, etc.).

score_func=f_classif,
k=10

sel = SelectKBest(score_func=f_classif, k=5);
X_new = sel.fit_transform(X, y)

sklearn.feature_selection.SelectPerce
ntile

Selects a user-specified top percentage of
features with the highest scores.

score_func=chi2,
percentile=20

sel = SelectPercentile(score_func=chi2,
percentile=20);

X_new = sel.fit_transform(X, y)

sklearn.feature_selection.mutual_info
_classif / mutual_info_regression

Computes the mutual information
(information gain) between each feature
and the target variable. Non-parametric and
captures nonlinear relationships.

discrete features='aut
0, n_neighbors=3,
random_state=None

mi = mutual_info_classif(X, y);
pd.Series(mi, index=X.columns)

sklearn.decomposition.PCA

Performs Principal Component Analysis to
reduce dimensionality while preserving
maximal variance. Linear orthogonal
transformation.

n_components,
svd_solver, whiten,
random_state

pca = PCA(n_components=2);
X_pca = pca.fit_transform(X_scaled)

o

o

&

vm.nmu.org.ua

HTY «/HinpoBcbKa nonitexHika» | Kadeapa npukaagHoi MaTeMaTUKK

Mutual Information is statistical dependency measurer used before model training.

Filter methods evaluate each feature independently of others — fast and interpretable but may ignore feature interactions.

PCA finds new orthogonal components maximizing variance — mathematically based on eigenvalue decomposition of the covariance matrix.

Choose the number of components k based on the explained variance ratio (pca.explained_variance_ratio_).

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Titanic ML pipeline code (ML pipeline step by step)

import pandas as pd

from
from
from
from
from
from
from
from

sklearn.model selection import trai
sklearn.preprocessing import Standa
sklearn.impute import Simplelmputer

n test split, cross val score
rdScaler, OneHotEncoder

sklearn.compose import ColumnTransformer

sklearn.pipeline import Pipeline
sklearn.linear model Import Logilsti

cRegression

sklearn.datasets import fetch openml

sklearn.feature selection import Va

$# === 1. Load Titanic dataset ===

rianceThreshold

X, y = fetch openml ("titanic", version=1l, as frame=True, return X y=True)

Yy = y.astype (int)

print ("\n——— INITIAL DATA (10 random samples) ———")
print (X.sample (10, random state=42))

Column Type

Description
Passenger class (1st, 2nd, 3rd) — proxy for

pclass Categorical (1, 2, 3) social/economic status.

sex Categorical (male, female) Passenger’s gender.

age Numerical Passenger’s age (may contain missing values).
sibsp Numerical Number of siblings/spouses aboard.

parch Numerical Number of parents/children aboard.

fare Numerical Ticket fare.

embarked Categorical

Port of embarkation (C, Q, S).

survived Target (binary)

1 = survived, 0 = died.

o/

'@. HTY «/lHinpoBCcbKa nonitexHika» | Kadbeapa npukaagHoi MaTeMaTHKH

vm.nmu.org.ua

——— INITIAL DATA (10 random samples) ——-

1148
1045
982
808
11585
240
1118
596
524
65

1142
10459
S5g2
808
1185
240
1118
596
524
63

1148
1048
582
808
1185
240
1118
596
924
65

pclass name

3 Rintamaki, Mr. Matti
3 Nakid, Mr. Sahid
3 Lyntakoff, Mr. Stanko
3 Ford, Mr. Arthur
3 Shaughnessy, Mr. Patrick
1 Romaine, Mr. Charles Hallace ('Mr C Rolmane')
3 Peltomaki, Mr. Nikolail Johannes
b Wilhelms, Mr. Charles
3 Felly, Mr. James
1 Chambers, Mrs. Norman Campbell (Bertha Griggs)

sibsp parch ticket fare cabin embarked
0 0 STON/O 2. 3101273 7.1250 NaN S
1 1 2653 15.7417 NaN C
0 0 3459235 7.8958 NaN)
0 0 A/S 1478 8.0500 NaN S
0 0 370374 7.7500 NaN Q
0 0 111428 26.5500 NaN S
0 0 STON/O 2. 3101291 7.59250 NaN S
0 0 244270 13.0000 NaN S
0 0 330911 7.8292 NaN Q
1 0 113806 53.1000 E8)

home.dest

NalN

Nal

NalN

Bridgwater, Somerset, England

NalN

New York, NY

NalN

London, England

NalN

New York, NY / Ithaca, NY

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

seX
male
male
male
male
male
male
male
male
male
female

boat
Nal
NalN
Nal
Nal

NalM

NalN

age
35.0
20.0

Nal

NalN

NalN
45,
25.
31.
34.
33.

LT S e

body
Nal
Nal
NalN
Nal
Nal
Nal
NalN
Nal
JO.0
NalN

Titanic ML pipeline code (ML pipeline step by step)

£ Select all relewvant features

X = X[['pclass',

(drop text fields and identifiers)

'sex', 'age', 'sibsp', 'parch', 'fare', 'embarksd']]

Separate numeric and categorical columns

num features = ['age', 'sibsp', 'parch', 'fare']
cat features = ['pclass', 'sex', 'embarked']
P =—= Data Cleaning ===

num cleaner = SimpleImputer (strategy="msdian")

cat cleaner = SimpleImputer{5trategy='most_frequent'}

X num cleaned

X cat cleaned
X cleaned = pd.concat([X num cleaned, X cat cleaned], axis=1)

print{"\n———.ﬂFTER DATA CLEANTNG
print{X_cleaned.sample(lﬂ, random state=42))

___I'l}

(missing values replaced)

Feature Scalin

[—

scaler = StandardScaler()

X scaled = X cleaned.copy ()

X scaled[num features] = scaler.fit_transform{X_scaled[num_features]}

print ("\n——— AFTER FEATURE SCALING
print(X_scaled.sample(lﬂ, random state=42))

___":I

(numeric standardized)

pd.DataFrame(num;cleaner.fit_transform{X[num_features]), columns=num features)
pd.DataFrame(cat_cleaner.fit_transformix[cat_features]), columns=cat features)

——— AFTER DATA CLEANING (missing values replaced)
sibsp
0.

1148
1049
G682
808
1155
240
1118
596
524
65

age
35.
20.
28.
28.
28.
45.
25.
31.
34.
33.

[N R [o o [O O

H o oo o oo o
o T s Y e i i Y i i s [

0

——— AFTER FEATURE

1148 0.
1049 -0.
582 0.
g08 -0.
1185 -0.
240 1.
1118 -0.
596 0.
524 0.
63 o

age
426099
736663
116523
116523
116523
201274
348075
116029
387341

271064

parch
0.

[e R s [S e R
[R e O [o T o [T N R

fare pclass

1250
L7417
.BS58
L0300
. 7500
.5500
9250
. 0000
.8292
.1000

3
3
3
3
3
1
3
2
3
1

fe

sex embarked

male
male
male
male
male
male
male
male
male
male

SCALING (numeric standardized)
fare pclass

sibsp

.475087
.481288
. 475087
. 475087
. 475087
. 475087
.475087
.475087
. 475087
.481288

parch

.445000
. 710763
.445000
.445000
.445000
.445000
.445000
.445000
.445000
.445000

.505708
.339111
.450805
427224
.4593624
.130140
.450240
.3592119
.492083
.383183

3

3
3
3
3
1
3
2
3
1

WD oy o W O

sex embarked
male
male
male
male
male
male
male
male
male
female

[T 0 T S T o R 4 T I B A TR

Purpose

Replace missing values using

Data Cleaning statistical measures

Mathematical Aspect

z; = median(X) or most

frequent

Transformation Example

NaN — 29.7

Normalize variance & remove

Feature Scaling unit dependency

a

Age=22 — -0.43

o/

/4‘! HTY «/[lHinpoBCbKa nonitexHika» | Kadeapa npukiagHOT MaTeMaTUKK
'.V‘ vm.nmu.org.ua

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

Titanic ML pipeline code (ML pipeline step by step)

[v T s Y O T o s T T o B B S

=== 4. Feature Encoding === ——— AFTER FEATURE ENCODING (categcrical — numeric) —---—
. age sibsp parch fare pclass 1 pclass 2 pclass
encoder = OneHotEncoder (handle unknown='ignore') 1148 0.426099 —0.479087 —0.445000 —0.505708 0.0 0.0 1.
encoded = encoder.fit transform(X scaled[cat features]) 1049 -0.736663 0.481288 0.710763 -0.339111 0.0 0.0 1.
encoded df = pd.DataFrame (encoded.toarray(), columns=encoder.get feature names out (cat features)) 982 -0.116523 -0.475087 -0.445000 -0.450205 0.0 0.0 1.
- - - - - 808 -0.116523 -0.475087 -0.445000 -0.487824 0.0 0.0 1.
1165 -0.116523 -0.475087 -0.445000 -0.493624 0.0 0.0 1.
X encoded = pd.concat([X scaled[num features], encoded df], axis=l) 240 1.201274 -0.479087 -0.445000 -0.130140 1.0 0.0 0.
print ("\n--- AFTER FEATURE ENCODING (categorical — numeric) ---") 1118 -0.345075 =0.475087 —0.445000 -0.490240 0.0 0.0 L
, 556 0.116029 -0.475087 -0.445000 -0.29211% 0.0 1.0 0.
print (X_encoded.sample (10, random state=42)) 924 0.387341 -0.479087 —0.445000 —0.492093 0.0 0.0 1.
65 0.271064 0.481288 -0.445000 0.383183 1.0 0.0 0.
=== 5. Feature Selection (variance filter) ===
. sex female sex male embarked C embarked Q@ embarked S
selector = VarianceThreshold(threshold=0.22) 1148 T 0.0 T 1.0 0.0 0.0 10
¥ selected = pd.DataFrame (selector. fit_transform (¥ encoded), columns=X encoded.columns|[selector.get support()]) 1049 0.0 1.0 1.0 0.0 0.0
982 0.0 1.0 0.0 0.0 1.0
,) 808 0.0 1.0 0.0 0.0 1.0
print ("\n——— AFTER FEATURE SELECTION (low-variance features removed) —-—-—") 1195 0.0 1.0 0.0 1.0 0.0
print (X selected.sample (10, random state=42)) 240 0.0 1.0 0.0 0.0 1.0
1118 0.0 1.0 0.0 0.0 1.0
) . 556 0.0 1.0 0.0 0.0 1.0
$# Train-test split on the sselected features 924 0.0 1.0 0.0 1.0 0.0
X train, X test, y train, y test = train test split (X selected, y, test size=0.2, random state=42) 65 1.0 0.0 0.0 0.0 1.0
Train a model directly on the prepared data
clf = LogisticRegression(max iter=1000)
clf.fit (X train, y train) ——— AFTER FEATURE SELECTION (low-variance features removed) --—-
age sibsp parch fare pclass 3 sex female sex male
Evaluate 1148 0.426099 -0.475087 —-0.445000 -0.505708 1.0 0.0 1.0
. 1049 -0.736663 0.481288 0.710763 —-0.339111 1.0 0.0 1.0
scores = cross val score(clf, X selected, y, cov=53, scoring='accuracy') 982 -0.1165223 -0.479087 —-0.445000 —0.490805 1.0 0.0 1.0
print (f"\nCross-validation accuracy (on prepared data): {scores.mean():.3f}") 808 -0.116523 —-0.475087 —-0.445000 —-0.487824 1.0 0.0 1.0
1155 —-0.116523 —-0.475%087 —-0.445000 —-0.493624 1.0 0.0 1.0
. . 240 1.201274 —-0.479087 —-0.445000 —-0.130140 0.0 0.0 1.0
Purpose Mathematical ASpeCt Transformation Example 1118 -0.349075 —0.479087 —0.445000 —0.490240 1.0 0.0 1.0
596 0.11602% —-0.475087 —-0.445000 -0.352118 0.0 0.0 1.0
Map categorical data to 524 0.3287341 -0.479087 -0.445000 -0.452093 1.0 0.0 1.0
L] - n — - - - - - -]
Feature Encoding numeric vectors One-Hot Encoding — R™ sex=female — [1,0] 65 0.271064 0.481288 -0.445000 0.383183 0.0 1.0 0.0

Remove low-variance Cross-validation accuracy (on preparsd data): 0.730

Feature Selection Var(X;) < € = drop drops constants

(uninformative) features

/&. HTY «/JHinpoBcbKa nonitexHika» | Kadegpa npmMkiagHOi MaTteMaTUKM Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

B4 vm.nmu.org.ua

Building an ML Pipeline (Integration of All Steps)

Class / Function Description Key Parameters Example Usage

steps=[('scaler’,
StandardScaler()), (‘'model’,
LogisticRegression())], verbose

pipe = Pipeline(][...]);
pipe.fit(X_train, y_train)

Sequentially connects preprocessing and modeling steps

sklearn. pipeline. Pipeline into one composite estimator. Each step executes in order.

transformers=[(‘'num’, scaler,
num_cols), (‘cat’, encoder, ct = ColumnTransformer(]...])
cat_cols)], remainder='drop’

sklearn.compose.Column Applies different transformations to different columns
Transformer (e.g., scaling for numerical, encoding for categorical).

sklearn.model_selection.

cross val score Evaluates entire pipeline performance via cross-validation. cv=5, scoring="accuracy’ cross_val_score(pipe, X, Yy, cv=5)

sklearn.metrics (e.g.
accuracy_score, Evaluates pipeline output on test data. —
classification_report)

y_pred = pipe.predict(X_test);
accuracy_score(y_test, y_pred)

T e tegs : T : pipe =
sklgarn.plpellne.make_pl Slmpllfled factory.m.ethod for creating pipelines without “steps make._pipeline(StandardScaler(),
peline naming steps explicitly. SVC())

Key Concepts

1. A Pipeline guarantees that all transformations are applied consistently during both training and inference.

2. It simplifies cross-validation and hyperparameter tuning — all preprocessing happens inside each fold.

3. You can include preprocessing (scaling, encoding, feature selection), anomaly handling, and the model in a single workflow.

4. It ensures no data leakage — transformations are fit only on the training portion.

o

./“ HTY «/HinpoBcbKa nonitexHika» | Kadeapa npukaagHoi MaTeMaTUKK Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"
vm.nmu.org.ua

&

Complete Code Example — Full Titanic Data Pipeline

—-—— INITIAT DATA

pclass
1148
1049
682
808
1155
240
1118
596
G624
65

LV I o T S R el ' I S 1% T R S

o

=
7

<

')
Preprocessor
7)
: G
Numerical e
Imputation, scaling X
_ J
2 S
Categorical Classifier

Imputation, encoding

vm.nmu.org.ua

Logistic
_ >, F‘ "
L egression
(10 random samples) ———
name seX age
Rintamaki, Mr. Matti male 35.0
Nakid, Mr. Sahid male Z20.0
Lyntakoff, Mr. Stanko male NaN
Ford, Mr. Arthur male NaN
Shaughnessy, Mr. Patrick male NaN
Fomaine, Mr. Charles Hallace ('Mr C Eolmane') male 45.0
Peltomaki, Mr. Nikolail Johannes male 25.0
Wilhelms, Mr. Charles male 31.0
Felly, Mr. James male 34.5
Chambers, Mrs. Norman Campbell (Bertha Griggs) female 33.0
HTY «/HinpoBcbKa nonitexHika» | Kadeapa npukaagHoi MaTeMaTUKK Course "

sibsp

H o O oo o ook O

parch

LI T e R s S R N L

import pandas as pd

import numpy

from
from
from
from
from
from
from
from

=== 1 .

X, y = fetch openml ("titanic",

sklearn
sklearn.
sklearn
sklearn.
sklearn
sklearn.
sklearn
sklearn.

as np

preprocessing import StandardScaler,
.dmpute import SimpleImputer

compose import ColumnTransformer
.pipeline import Pipeline

linear model import LogisticRegression
.datasets i1mport fetch openml

feature selection import VarianceThreshold

Load Titanic dataset ===

version=]

v = y.astype(int)

print ("\n——— INITIAIL DATA
print (X.sample (10,

ticket
3101273
2653
349235
A/5 1478
370374
111428
3101291
244270
330511
113806

STON/O 2.

STON/O 2.

(10 random samples)

___ll}

random state=42))

fare cabin embarked boat body
7.1250 NaM S NaN NaM
15.7417 NaN C C NaN
7.8958 NaN S NaN NaN
8.0500 NaN S NaN NanN Bridgwater,
7.7500 NaM o MNaN NaM
26.5500 NaN S 9 NaN
7.9250 NamM S NaN NaM
13.0000 NaN S 9 NaN
7.8282 NaN Q@ NanN 70.0
53.1000 E8 S 5 NaN

Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

-model selection import train test split, cross val score
OneHotEncoder

1, as frame=True, return X y=True)

home .dest
NalN
NalN
NalN
England
NalN
New York, NY
NalN
England
NalN

Somerset,

London,

New York, NY / Ithaca, NY

Complete Code Example — Full Titanic Data Pipeline

¥ == 2. Create full pipeline ===
num transformer = Pipeline (steps=[
("imputer', SimpleImputer (strategy="'medizn')),

{"scaler'", StandardScaler())

1)

cat transformer = Pipeline (steps=[
('"imputer', SimpleImputer (strategy='most frequent')),
{'encoder’', DneHotEncoder{handle_unknown=‘igncre'}}

1)

preprocessor = ColumnTransformer (transformers=|
("num', num transformer, num features),
('cat', cat transformer, cat features)

1)

model = Pipeline (steps=|[
("preprocessor', preprocessor),
('selector', VarianceThreshold(threshold=0.22)),
('classifier', LogisticRegression(max iter=1000))

1)

$# === 3. Train-test split & fit model =—=

¥ train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)

model.fit (X train, y train)

=== 4. Evaluate ===
scores = cross val score(model, X, y, cv=5, scoring='accuracy')
print (f"\nCross—-validation accuracy: {scores.mean():.3f}")

Cross—validation accuracy: 0.734

o

Predict the survival of a new (random) passenger:

=== 5. Create random passenger ===
(Using reasonable ranges based on the Titanic dataset)
random passenger = pd.DataFrame ([{

"pclass": np.random.choice (["1st™, "2nd", "3rd"]),
"zex": np.random.choice (["male", "females"]),
"age": np.random.uniform(l, 70},

"zibsp": np.random.randint (0, 3),

"parch": np.random.randint (0, Z2),

"fare": np.random.uniform (10, 150),

"embarked": np.random.choice{["C", "g", "S"]1)
print ("\nRandom passenger profile:™)
print (random passenger)
=== 6. Predict survival ===
prediction = model.predict (random passenger) [0]

prob = model.predict proba(random passenger) [0, 1]

=== 7. output result =—=

print (f"\nPredicted survival: {'Yes' if prediction == 1 else 'No'} (probkability = {prob:

Random passengser profile:
pclass seX age sibsp parch fare embarked
0 1st male 34.56124¢ 0 1 46.81821 S

Predicted surwvival: No (probability = 0.28)

Random passenger profile:
pclass seX age sibsp parch fare embarked
0 3rd female 41.12876¢6 1 0 8%5.419109 C

Predicted survival: Yes (probability = 0.82)

./A‘ HTY «/HinpoBcbKa nonitexHika» | Kadeapa npukaagHoi MaTeMaTUKK Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

(a
B4 vm.nmu.org.ua

2

1)

From Raw Data to Prediction — Key Concepts

Tool / Concept Purpose in the ML Workflow
1. Data Understanding pandas, info(), describe() Explore structure, detect missing values, identify data types.
2. Data Cleaning Imputer (Simplelmputer) Fill or remove missing data consistently.

3. Feature Preparation

Encoder (OneHotEncoder), Scaler (StandardScaler) Convert categories and scale numerical features for model readiness.

4. Feature Selection /
Reduction

Filter methods, PCA Keep the most informative features, reduce dimensionality and noise.

5. Transformation Control

ColumnTransformer Apply different transformations to specific feature groups.

Combine preprocessing + model training into a single repeatable

6. Workflow Automation Pipeline Drocess.

7. Model Training LogisticRegression, RandomForest, etc. Learn relationships from training data.

8. Validation & Testing Cross-validation, train_test_split Evaluate model performance and generalization.
9. Real-world Use predict() / predict_proba() Make predictions for new (unseen) samples.

A good ML model is not just a classifier — it’s a reproducible pipeline that transforms raw data

o/

into reliable predictions

./A‘ HTY «/HinpoBcbKa nonitexHika» | Kadeapa npukaagHoi MaTeMaTUKK Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

-

B4 vm.nmu.org.ua

o/

7‘ HTY “HINPOBCHKA MOMITEXHIKA
KA®EJPA TPUKNALIHOI

RS MATEMATHKH

Let’s proceed to the team project

Course "Machine Learning: From Mathematical Foundations to Implementation in PYTHON"

	Слайд 1: Data Preparation and ML Pipeline
	Слайд 2: 1. Learning Objectives
	Слайд 3: Theoretical Background of Data Preparation
	Слайд 4: Step 1 — Data Cleaning
	Слайд 5: Step 2 — Feature Scaling
	Слайд 6: Step 3 — Feature Encoding
	Слайд 7: Ordinal Encoding
	Слайд 8: One-Hot Encoding
	Слайд 9: Binary Encoding
	Слайд 10: Hash Encoding
	Слайд 11: Feature Selection
	Слайд 12: Filter methods — independent of model
	Слайд 13: Filter methods - Example
	Слайд 14: Dimensionality Reduction (PCA)
	Слайд 15: Step 1. Data Cleaning — Python Implementation Overview
	Слайд 16: Feature Scaling — Python Implementation Overview
	Слайд 17: Feature Encoding - sklearn
	Слайд 18: Feature Selection (Filter Methods) & Dimensionality Reduction (PCA)
	Слайд 19: Titanic ML pipeline code (ML pipeline step by step)
	Слайд 20: Titanic ML pipeline code (ML pipeline step by step)
	Слайд 21: Titanic ML pipeline code (ML pipeline step by step)
	Слайд 22: Building an ML Pipeline (Integration of All Steps)
	Слайд 23: Complete Code Example — Full Titanic Data Pipeline
	Слайд 24: Complete Code Example — Full Titanic Data Pipeline
	Слайд 25: From Raw Data to Prediction — Key Concepts
	Слайд 26: Let’s proceed to the team project

