

Lightweight Design in Mechanical Engineering

Problem 1. Lightweight Design of rods under tensile and compressive loads

Matthias Kröger, Prof. Dr.-Ing. at TUBAF

Serhii Onyshchenko, PhD, assoc. prof. at DUT

Problem 1

Calculate lightweight design of a rod loaded with static axial tensile and compressive forces (Fig. 1).

Minimum safety factor is $n_{\min} = 3$.

Permissible stress is σ_{perm} .

Forces are $F_1 = 10 \text{ kN}$ and $F_2 = 28 \text{ kN}$.

Dimensions are $a = 1 \text{ m}$, $b = 2 \text{ m}$.

Consider hollow rod design.

Consider materials with high strength-to-density ratio.

Perform material cost comparison.

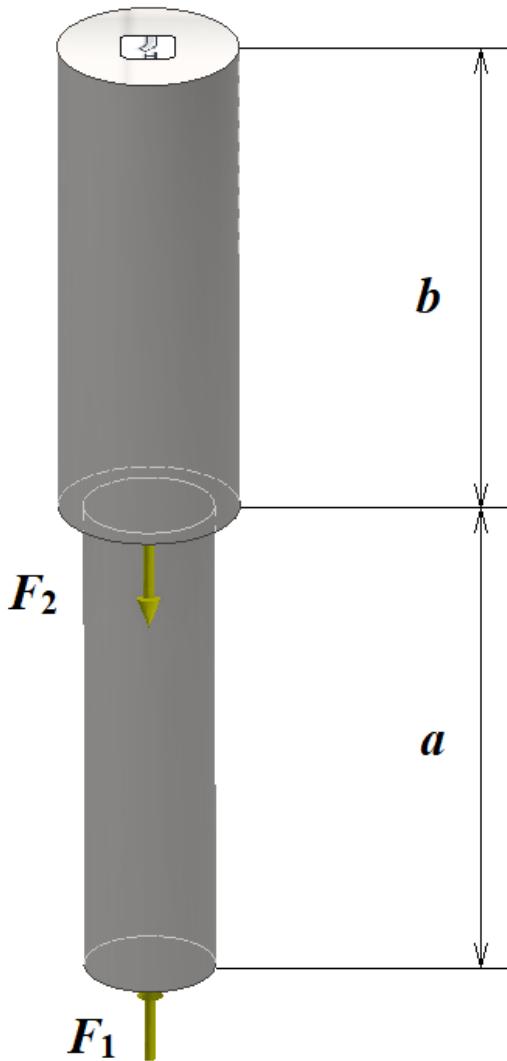


Fig. 1 – Loading scheme

Problem 1

1. Consider a **circular-shaped solid rod (round bar)** made of structural steel **S235J2 (1.0117)** according to the standard EN 10027-2.

Yield strength is $\sigma_{\text{yield}} = 235 \text{ MPa} = 235 \, 000 \text{ kPa}$;

Permissible stress $\sigma_{\text{perm}} = \sigma_{\text{yield}} / n_{\text{min}} = 78.333 \text{ MPa} = 78 \, 333 \text{ kPa}$;

Density is $\rho_{\text{st}} = 7850 \text{ kg/m}^3$.

2. Create free-body diagrams (FBD) (**Figs. 2 and 3**) and calculate internal tensile forces.

$$N_1 = -F_1 = -10 \text{ kN};$$

$$N_2 = -F_1 + F_2 = 18 \text{ kN}.$$

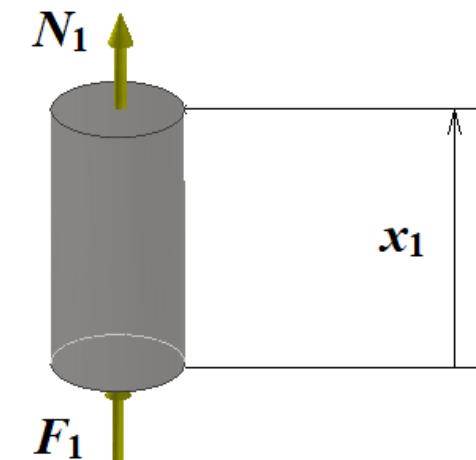


Fig. 2 – FBD #1

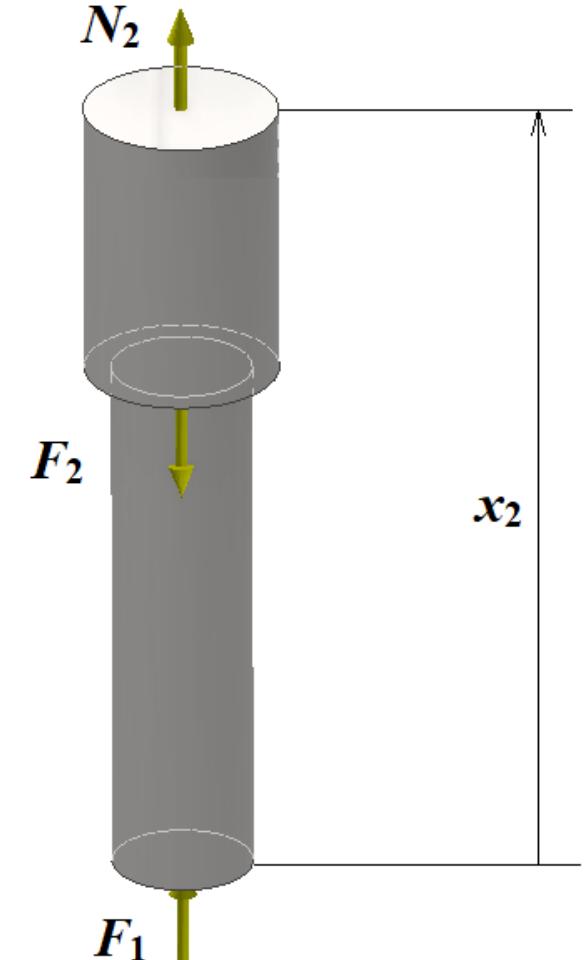


Fig. 3 – FBD #2

Problem 1

3. Determine minimum cross-sectional area, which satisfies the safety factor $n_{\min} = 3$.

$$A_{1.\min} = |N_1| / \sigma_{\text{perm}} = |-10 \text{ kN}| / 78\,333 \text{ kPa} = 1.277 \cdot 10^{-4} \text{ m}^2;$$

$$A_{2.\min} = N_2 / \sigma_{\text{perm}} = 18 \text{ kN} / 78\,333 \text{ kPa} = 2.298 \cdot 10^{-4} \text{ m}^2.$$

4. Calculate minimum diameters (Figs. 4 and 5) of circular-shaped solid rods (round bars).

$$d_{1.\min} = (4 \cdot A_{1.\min} / \pi)^{1/2} = 0.0128 \text{ m} = 12.8 \text{ mm};$$

$$d_{2.\min} = (4 \cdot A_{2.\min} / \pi)^{1/2} = 0.0171 \text{ m} = 17.1 \text{ mm}.$$

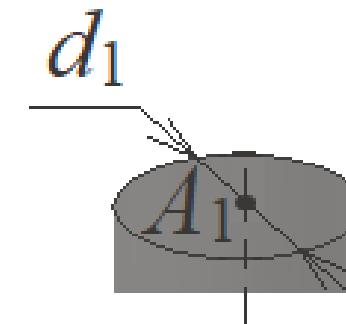


Fig. 4 – Diameter 1

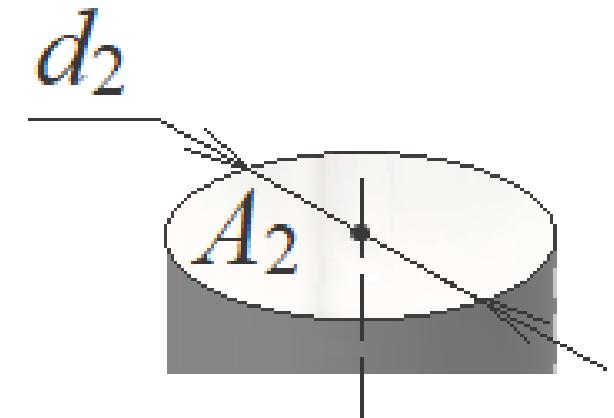


Fig. 5 – Diameter 2

Problem 1

5. Pick **round bars** produced according to the European Standard DIN EN 10060 : 2003.

$$d_{1.act} = 13 \text{ mm}; d_{2.act} = 18 \text{ mm.}$$

6. Determine actual **round bar cross-sectional areas**

$$A_{1.act} = [\pi \cdot (d_{1.act})^2] / 4 = 1.327 \cdot 10^{-4} \text{ m}^2; A_{2.act} = [\pi \cdot (d_{2.act})^2] / 4 = 2.545 \cdot 10^{-4} \text{ m}^2;$$

7. Calculate actual safety margins of **round bars**

$$\sigma_{1.act} = |N_1| / A_{1.act} = 75.34 \text{ MPa}; \sigma_{2.act} = N_2 / A_{2.act} = 70.74 \text{ MPa};$$

$$n_{1.act} = \sigma_{yield} / \sigma_{1.act} = 3.12; n_{2.act} = \sigma_{yield} / \sigma_{2.act} = 3.32.$$

Problem 1

8. Calculate an equally safe ($n_{\min} = 3$) but hollow cross-sectional area (**round pipe**) (Fig. 6) considering $A_{1,\min}$ and $A_{2,\min}$ from before as minimum permissible values. D is outside pipe diameter, t is pipe wall thickness. According to ISO 3183 assume $D_1 = 26.7 \text{ mm}$, $t_1 = 1.65 \text{ mm}$; $D_2 = 48.3 \text{ mm}$, $t_2 = 1.65 \text{ mm}$.

then pipe cross-sectional areas are

$$A_{1,RP} = \pi (D_1 \cdot t_1 - t_1^2) = 1.298 \cdot 10^{-4} \text{ m}^2;$$

$$A_{2,RP} = \pi (D_2 \cdot t_2 - t_2^2) = 2.418 \cdot 10^{-4} \text{ m}^2.$$

9. Calculate actual safety margins of **round pipes**

$$\sigma_{1,RP} = |N_1| / A_{1,RP} = 77.01 \text{ MPa}; \sigma_{2,RP} = N_2 / A_{2,RP} = 74.44 \text{ MPa};$$

$$n_{1,RP} = \sigma_{yield} / \sigma_{1,RP} = 3.05; n_{2,act} = \sigma_{yield} / \sigma_{2,RP} = 3.16.$$

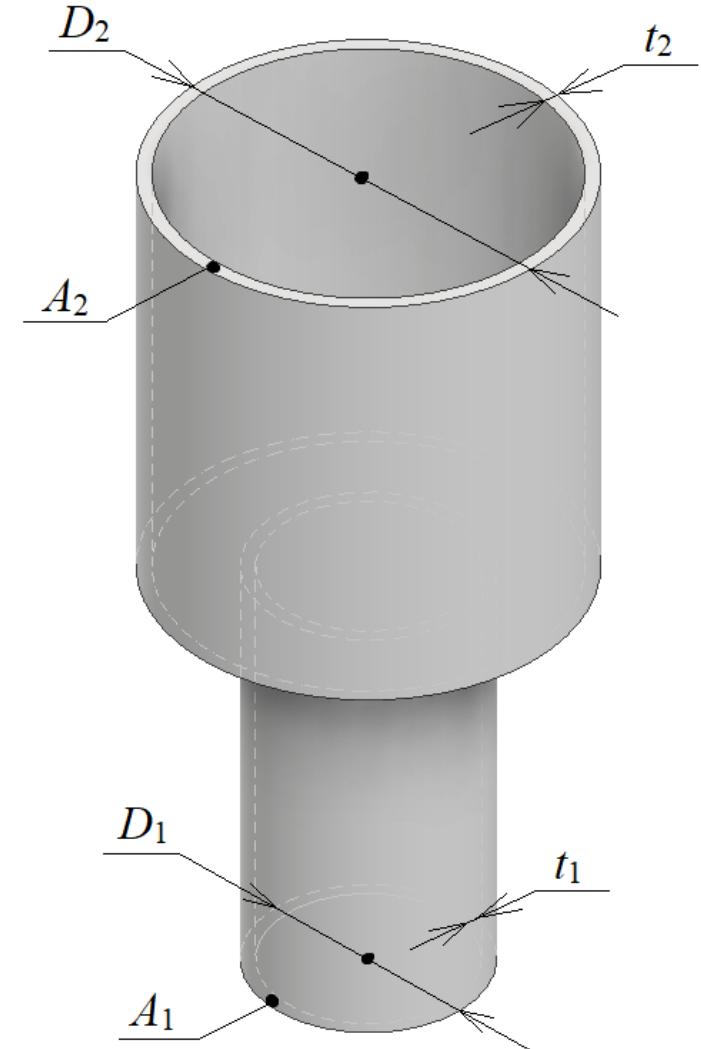


Fig. 6 – Round pipe scheme

Problem 1

10. Lightweight design of loaded objects can be achieved by using materials with **high strength-to-density ratio**, like **Aluminum (Fig. 7)** or **Titanium alloys (Fig. 8)**.

Consider the alloy **Titanium Grade 5 (Ti-6Al-4V)** and **Aluminum 7075-T6** for the same loading conditions and the safety margin ($n_{\min} = 3$).

Yield strengths are

$\sigma_{\text{yield.Ti}} = 790 \text{ MPa}$ and $\sigma_{\text{yield.Al}} = 500 \text{ MPa}$.

Densities are

$\rho_{\text{Ti}} = 4430 \text{ kg/m}^3$ and $\rho_{\text{Al}} = 2810 \text{ kg/m}^3$.

Permissible stress

for Ti $\sigma_{\text{perm.Ti}} = \sigma_{\text{yield.Ti}} / n_{\min} = 263.333 \text{ MPa}$;

for Al $\sigma_{\text{perm.Al}} = \sigma_{\text{yield.Al}} / n_{\min} = 166.667 \text{ MPa}$.

Fig. 7 – Aluminum alloy

Fig. 8 – Titanium alloy

Problem 1

11. Repeat steps 3-7 for Ti and Al.

Minimum areas

$$A_{1.\min.Ti} = |N_1| / \sigma_{\text{perm.Ti}} = 3.797 \cdot 10^{-5} \text{ m}^2; A_{2.\min.Ti} = N_2 / \sigma_{\text{perm.Ti}} = 6.835 \cdot 10^{-5} \text{ m}^2;$$

$$A_{1.\min.Al} = |N_1| / \sigma_{\text{perm.Al}} = 6 \cdot 10^{-5} \text{ m}^2; A_{2.\min.Al} = N_2 / \sigma_{\text{perm.Al}} = 1.08 \cdot 10^{-4} \text{ m}^2;$$

Minimum diameters

$$d_{1.\min.Ti} = 0.00695 \text{ m} = 6.95 \text{ mm}; d_{2.\min.Ti} = 0.00933 \text{ m} = 9.33 \text{ mm};$$

$$d_{1.\min.Al} = 0.00874 \text{ m} = 8.74 \text{ mm}; d_{2.\min.Al} = 0.01173 \text{ m} = 11.73 \text{ mm};$$

Actual diameters

$$d_{1.act.Ti} = 7 \text{ mm}; d_{2.act.Ti} = 10 \text{ mm}; d_{1.act.Al} = 9 \text{ mm}; d_{2.act.Al} = 12 \text{ mm};$$

Actual areas

$$A_{1.act.Ti} = 3.848 \cdot 10^{-5} \text{ m}^2; A_{2.act.Ti} = 7.854 \cdot 10^{-5} \text{ m}^2;$$

$$A_{1.act.Al} = 6.362 \cdot 10^{-5} \text{ m}^2; A_{2.act.Al} = 1.131 \cdot 10^{-4} \text{ m}^2;$$

Actual stresses

$$\sigma_{1.act.Ti} = 259.85 \text{ MPa}; \sigma_{2.act.Ti} = 229.18 \text{ MPa};$$

$$\sigma_{1.act.Al} = 157.19 \text{ MPa}; \sigma_{2.act.Al} = 159.16 \text{ MPa};$$

Actual safety margins

$$n_{1.act.Ti} = 3.04; n_{2.act.Ti} = 3.45;$$

$$n_{1.act.Al} = 3.18; n_{2.act.Al} = 3.14.$$

Problem 1

12. Perform volume calculation for actual structures made of **Steel** (Fig. 9), **Ti** (Fig. 10) and **Al** (Fig. 11).

$$V_{St} = A_{1.act} \cdot a + A_{2.act} \cdot b = 6.417 \cdot 10^{-4} \text{ m}^3;$$

$$V_{St.RP} = A_{1.RP} \cdot a + A_{2.RP} \cdot b = 6.135 \cdot 10^{-4} \text{ m}^3;$$

$$V_{Ti} = A_{1.act.Ti} \cdot a + A_{2.act.Ti} \cdot b = 1.956 \cdot 10^{-4} \text{ m}^3;$$

$$V_{Al} = A_{1.act.Al} \cdot a + A_{2.act.Al} \cdot b = 2.898 \cdot 10^{-4} \text{ m}^3.$$

13. Determine mass and weight of actual structures

$$m_{St} = \rho_{St} \cdot V_{St} = 5.037 \text{ kg};$$

$$G_{St} = m_{St} \cdot g = 49.364 \text{ N};$$

$$m_{St.RP} = \rho_{St} \cdot V_{St.RP} = 4.816 \text{ kg};$$

$$G_{St.RP} = m_{St} \cdot g = 47.195 \text{ N};$$

$$m_{Ti} = \rho_{Ti} \cdot V_{Ti} = 0.866 \text{ kg};$$

$$G_{Ti} = m_{Ti} \cdot g = 8.49 \text{ N};$$

$$m_{Al} = \rho_{Al} \cdot V_{Al} = 0.814 \text{ kg}.$$

$$G_{Al} = m_{Al} \cdot g = 7.981 \text{ N}.$$

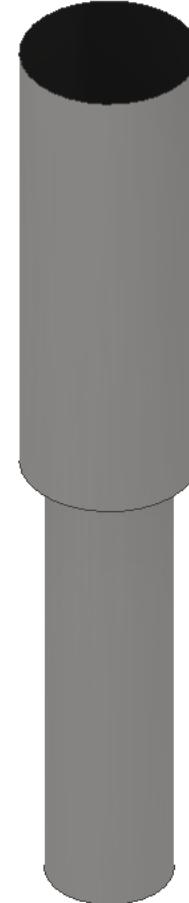


Fig. 9 –
Steel model

Fig. 10 –
Titanium
model

Fig. 11 –
Aluminum
model

Problem 1

14. Prices per kg of materials are

Steel round bar	$p_{St} = 0.728 \text{ €/kg};$
Steel round pipe	$p_{St.RP} = 0.759 \text{ €/kg};$
Titanium round bar	$p_{Ti} = 5.97 \text{ €/kg};$
Aluminum round bar	$p_{Al} = 2.955 \text{ €/kg}.$

15. Determine structure
material cost (SMC)

Structure mass
(for comparison)

$$SMC_{St} = m_{St} \cdot p_{St} = 3.67 \text{ €};$$

$$SMC_{St.RP} = m_{St.RP} \cdot p_{St.RP} = 3.66 \text{ €};$$

$$SMC_{Ti} = m_{Ti} \cdot p_{Ti} = 5.17 \text{ €};$$

$$SMC_{Al} = m_{Al} \cdot p_{Al} = 2.41 \text{ €}.$$

$$m_{St} = p_{St} \cdot V_{St} = 5.037 \text{ kg};$$

$$m_{St.RP} = p_{St} \cdot V_{St.RP} = 4.816 \text{ kg};$$

$$m_{Ti} = p_{Ti} \cdot V_{Ti} = 0.866 \text{ kg};$$

$$m_{Al} = p_{Al} \cdot V_{Al} = 0.814 \text{ kg}.$$

Actual safety margins
(for comparison)

$$n_{1.act} = 3.12; n_{2.act} = 3.32;$$

$$n_{1.RP} = 3.05; n_{2.act} = 3.16;$$

$$n_{1.act.Ti} = 3.04; n_{2.act.Ti} = 3.45;$$

$$n_{1.act.Al} = 3.18; n_{2.act.Al} = 3.14.$$

Problem 1

Conclusion.

Structure made of **steel round pipe** has the same material cost as a structure made of **steel bar**, but it's **weight** is only **96% of the steel bar structure**, while it provides sufficient safety margin.

Structures made of **titanium round bar** and **aluminum round bar** have significantly lower weight – **17%** and **16% of the steel bar structure weight**, respectively. Titanium structure is more expensive – **141% of steel bar structure and aluminum is just 66% of steel bar structure**. At the same time, the safety margin is sufficient.

The final decision must be made from **budget or lightweight limitations**.

Thank you for your attention!

Matthias Kröger, Prof. Dr.-Ing. at TUBAF

Serhii Onyshchenko, PhD, assoc. prof. at DUT